Synthesis and evaluation of calcium channel antagonist activity of new 1, 4-dihydropyridines containing phenylamineimidazolyl substitute in guinea-pig ileal smooth muscle

A Fassihi, H Sadeghi, A Zarghi, A Shafiee

Abstract


Background: 1,4-dihydropyridines are a class of drugs which are used in the treatment of some cardiovascular disorders. The prototype, Nifedipine, does not have optimal pharmacokinetic and pharmacodynamic properties. Several new derivatives of 1, 4-dihydropyridine have been produced and pharmacologically evaluated in order to find drugs with better pharmacological properties. Among them, those with a substituted heteroaromatic ring in the C4 position of the 1, 4-dihydropyridine ring, instead of the phenyl ring in Nifedipine, are most considered. In this study, eight novel derivatives of this class with “2-methylthio-1-(phenylamino)imidazole-5-yl†in the C4, C3 and C5 positions were prepared and evaluated as calcium channel antagonist agents. Methods: To prepare these compounds, Hantzsch method for the synthesis of 1, 4-dihydropyridine derivatives was deployed. An aldehyde was reacted with appropriate acetoacetate ester and ammonium acetate. This aldehyde was prepared in three steps. Cumulative doses were applied to determine the relaxing effect of the compounds on the longitudinal smooth muscle of male albino guinea pigs. Results: Chemical structures of the compounds were characterized by 1H nuclear magnetic resonance, infrared and mass spectroscopy. The IC50 of each compound was graphically determined from the concentration-response curves. Conclusions: Two compounds were more active than Nifedipine. Both had lipophilic ester groups with low steric hindrance that met the merits of a better receptor binding of 1, 4-dihydropyridines. These derivatives have high potential for further study.
Keywords: 1, 4-dihydropyridine, Calcium channel antagonist, Phenylamineimidazolyl, Cardiovascular disorder

Full Text:

PDF