The Effect of COVID 19 on Liver Parenchyma Detected and measured by CT scan Hounsfield Units
Abstract
Background: COVID 19 may affect organs other than lungs, including liver, leading to parenchymal changes. These changes are best assessed by unenhanced computed tomography (CT). We aim to investigate the effect of COVID 19 on liver parenchyma by measuring the attenuation in CT scan Hounsfield unit (HU). Materials and Methods: A cohort of patients, who tested COVID 19 polymerase chain reaction positive, were enrolled and divided into two groups: fatty liver (FL) group (HU ? 40) and nonfatty liver (NFL) group (HU > 40) according to liver parenchyma attenuation measurements by high resolution noncontrast CT scan.
The CT scan was performed on admission and on follow up (10–14 days later). Liver enzyme tests were submitted on admission and follow up. Results: Three hundred and two patients were enrolled. Liver HU increased significantly from 48.9 on admission to 53.4 on follow up CT scan (P<0.001) in all patients. This increase was more significant in the FL group (increased from 31.9 to 42.9 [P =0.018]) Liver enzymes were abnormal in 22.6% of the full cohort. However, there was no significant change in liver enzymes between the admission and follow up in both groups. Conclusion: The use of unenhanced CT scan for assessment of
liver parenchymal represents an objective and noninvasive method. The significant changes in parenchymal HU are not always accompanied by significant changes in liver enzymes. Increased HU values caused by COVID 19 may be due to either a decrease in the fat or an increase in the fibrosis in the liver.
The CT scan was performed on admission and on follow up (10–14 days later). Liver enzyme tests were submitted on admission and follow up. Results: Three hundred and two patients were enrolled. Liver HU increased significantly from 48.9 on admission to 53.4 on follow up CT scan (P<0.001) in all patients. This increase was more significant in the FL group (increased from 31.9 to 42.9 [P =0.018]) Liver enzymes were abnormal in 22.6% of the full cohort. However, there was no significant change in liver enzymes between the admission and follow up in both groups. Conclusion: The use of unenhanced CT scan for assessment of
liver parenchymal represents an objective and noninvasive method. The significant changes in parenchymal HU are not always accompanied by significant changes in liver enzymes. Increased HU values caused by COVID 19 may be due to either a decrease in the fat or an increase in the fibrosis in the liver.
Keywords
Computed tomography scan, COVID?19, fatty liver, hepatic steatosis, Hounsfield unit, liver enzymes, liver fibrosis, liver parenchyma injury