Quantitative assessment of Wilms tumor 1 expression by real-time quantitative polymerase chain reaction in patients with acute myeloblastic leukemia
Abstract
Background: The Wilms tumor 1 (WT1) gene is originally defined as a tumor suppressor gene and a transcription factor that overexpressed in leukemic cells. It is highly expressed in more than 80% of acute myeloid leukemia (AML) patients, both in bone marrow (BM) and in peripheral blood (PB), and it is used as a powerful and independent marker of minimal residual disease (MRD);we have determined the expression levels of the WT1 by real-time quantitative polymerase chain reaction (RQ-PCR) in PB and BM in 126 newly diagnosed AML patients. Materials and Methods: This study was done in molecular pathology and cancer research center from April 2014 to June 2015, RQ-PCR method was used to determine the WT1 gene expression in BM and/or PB samples from 126 patients of AML, we cloned both WT1 and ABL genes for creating a standard curve, and we calculate copy number of
WT1 genes in patients. Results: A total of 126 AML patients consist of 70 males (55.6%) and 56 females (44.4%), with a median age of 26 years; 104 (81%) patients out of 126 show overexpression of WT1 gene. We also concomitant monitoring of fusion transcripts
(PML RARa, AML1-ETO, MLL-MLL, CBFb-MYH11, or DEK-CAN) in our patients, the AML1-ETO group showing remarkably low levels of WT1 compared with other fusion transcript and the CBFB-MYH11 showing high levels of WT1. Conclusion: We conclude that WT1 expression by RQ-PCR in AML patients may be employed as an independent tool to detect MRD in the majority of normal karyotype AML patients.
Key words: Acute myeloid leukemia, minimal residual disease, real-time quantitative polymerase chain reaction, Wilms tumor gene