

Temporal evolution of electrocardiographic anomalies observed in a young woman after COVID-19 vaccine

Elpidio Santillo, Lucio Cardinali, Luciano Marini

Department of Geriatric-Rehabilitative, Cardiac Rehabilitation Unit, IRCCS-INRCA, Fermo, Italy

Electrocardiographic alterations of ventricular repolarization have already been reported in cases of myocarditis following coronavirus disease-19 (COVID-19) vaccine, but it is not clear how long they persist. A 21-year-old female presented with chest discomfort and diffuse myalgia a week after receiving the first dose of a messenger RNA (mRNA) COVID-19 vaccine. The 12 leads standard electrocardiogram unveiled negative T waves in anterior and inferior leads, while her troponin-I values resulted in the upper limit. A mild form of post-COVID-19 vaccine myocarditis was diagnosed since the echocardiogram excluded major systolic alterations and pericardial effusions. The patient refused hospitalization, but luckily, she remained hemodynamically stable, presenting a quick clinical response to oral non-steroidal anti-inflammatory therapy. However, the electrocardiographic abnormalities required weeks for resolving. In our case, the later normalization of electrocardiographic anomalies was not associated with an ominous clinical course.

Key words: COVID-19 vaccines, electrocardiography, myocarditis

How to cite this article: Santillo E, Cardinali L, Marini L. Temporal evolution of electrocardiographic anomalies observed in a young woman after COVID-19 vaccine. *J Res Med Sci* 2025;30:51.

INTRODUCTION

Coronavirus disease-19 (COVID-19) pandemic represents one of the major challenges for the health systems globally.^[1] Indeed, COVID-19 has exerted a negative impact on worldwide populations in terms of mortality and morbidity, configuring it as a disastrous event on a planetary scale.^[2]

The availability of vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has provided a fundamental preventive tool for contrast COVID-19, consenting to save around 140,000 lives only in the United States by the year 2021.^[3,4] Currently, the COVID-19 vaccines approved by the World Health Organization include messenger RNA (mRNA) and viral vector vaccines.^[5]

COVID-19 vaccines can rarely cause severe adverse reactions, comprising myopericarditis, which may provoke electrocardiographic changes in the ventricular repolarization.^[6]

However, how long these electrocardiographic alterations persist and the prognostic significance of their duration is unclear.

CASE REPORT

A 21-year-old young woman underwent a cardiological examination as an outpatient at our institute for chest discomfort, diffuse myalgia, and asthenia. These symptoms had been onset for 1 week, starting 2 days after she received the first dose of a COVID-19 mRNA vaccine. The patient's medical history was silent, except for reported claustrophobia. She was not taking any medication. On presentation, her blood pressure was

Access this article online

Quick Response Code:

Website:

<https://journals.lww.com/jrms>

DOI:

10.4103/jrms.jrms_484_22

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

Address for correspondence: Dr. Elpidio Santillo, Cardiac Rehabilitation Unit, IRCCS-INRCA, C.da Mossa n 2, Fermo 63900, Italy.

E-mail: e.santillo@inrca.it

Submitted: 07-Jul-2022; **Revised:** 17-May-2023; **Accepted:** 31-Jul-2023; **Published:** 30-Sep-2025

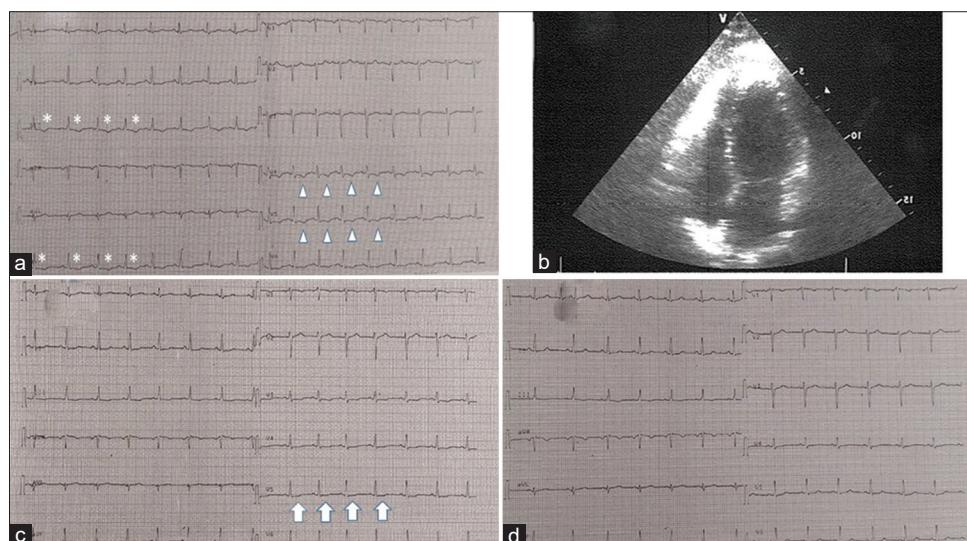
110/70 mmHg, and her oxygen saturation in room gas was 98%.

The patient was normal weight (body mass index: 23 kg/m²). The cardiovascular, thoracic, abdominal, and neurological examinations were normal.

The electrocardiogram (ECG) showed sinus tachycardia with a heart rate of 102/min and pronounced ventricular repolarization anomalies [Figure 1a]. Even if the echocardiogram excluded contractility anomalies and pericardial effusion [Figure 1b], the clinical case was suggestive of a mild myocarditis induced by the COVID-19 vaccine, according to Bozkurt criteria, for the presence of typical symptoms and ECG alterations.^[7]

Hence, hospitalization was proposed to the patient to ensure a strict clinical monitoring, but she refused the hospital admission. She also refused to undergo a cardiac magnetic resonance imaging (MRI) with contrast for claustrophobia. However, she accepted to perform other laboratory and instrumental examinations as outpatient.

Table 1 reports the values of analytes of interest measured from the patient's blood samples. Of note, C-reactive protein was slightly increased, whereas high sensitivity troponin-I was at the upper limits and decreased 24 h later. The nasopharyngeal swab for RNA SARS-CoV-2 and the antibody titers for other infectious pathogens (adenovirus, enterovirus, herpes virus, human immunodeficiency virus, hepatitis C virus, mycoplasma, and streptococcus) were also negative.


The patient underwent even a 24-h Holter ECG, which did not identify any major arrhythmias.

Anti-inflammatory oral therapy (ibuprofen 600 mg daily) was prescribed for the treatment of patient's symptoms, which resolved for 10 days. A month later, the onset of symptoms, an ECG documented a reduction of the electrocardiographic abnormalities [Figure 1c]. 2 months

Table 1: Laboratory tests

Analyte	Result	Reference range
Hs-TnI (ng/L) on presentation	11.8	2.3–12
Hs-TnI (ng/L) after 24 h	9.3	2.3–12
NT-proBNP (pg/mL)	64	Up to 125
Cr (mg/dL)	0.69	0.5–1
BUN (mg/dL)	18	16–25
Na (mEq/L)	139	135–150
K (mEq/L)	4.1	3.5–5.3
Ca (mg/dL)	10.5	8.5–11
Mg (mg/dL)	2.3	1.5–2.5
AST (Unit/L)	19	Up to 40
ALT (Unit/L)	13	Up to 40
CK (Unit/L)	56	Up to 200
LDH (Unit/L)	154	Up to 247
Glycemia (mg/dL)	84	60–110
WBC (per mcrL)	7990	4000–9000
HB (g/dL)	13	12.5–15
CRP (mg/L)	8.4	Up to 8
TSH (mcrU/mL)	3.163	0.340–5.600
ANA (positivity, dilution)	Negative	Positive $\geq 1:80$

Hs-TnI=high-sensitive troponin I; NT-proBNP=N-terminal prohormone of brain natriuretic peptide; Cr=Creatinine; BUN=Blood urea nitrogen; Na=Sodium; K=Potassium; Ca=Calcium; Mg=Magnesium; AST=Aspartate aminotransferase; ALT=Alanine aminotransferase; CK=Creatine kinase; LDH=Lactate dehydrogenase; WBC=White blood cells count; HB=Hemoglobin; CRP=C-reactive protein; TSH=Thyroid-stimulating hormone; ANA=Antinuclear antibody

Figure 1: Electrocardiographic and echocardiographic features at presentation and on follow-up. (a) Electrocardiogram at presentation: sinus tachycardia with ST-segment depression and negative T waves in V4-V5 leads (white arrowheads). Negative T waves are also evident in DII, DIII, and aVF leads (white asterisks). (b) Echocardiographic four-chamber systolic views at presentation: the dimension of heart chambers are normal, absence of pericardial effusion. (c) Electrocardiogram at 1 month: low voltage T waves are present in V4-V5. Minimal J point depression is observable in V5 lead (white arrows). T waves in DII, DIII, and aVF leads are biphasic. (d) Electrocardiogram at 2 months: significant recovery phase anomalies are no longer visible. Biphasic T waves persist only in DIII lead

later, a further ECG documented the resolution of ECG abnormalities [Figure 1d]. Then, the patient underwent a maximal exercise test, which resulted in negative for myocardial ischemia.

DISCUSSION

The present clinical case confirms that electrocardiography, i.e. a widely available and not invasive technique, allows the early identification of cardiac electrical abnormalities associated with myocarditis after COVID-19 vaccination. Electrocardiography significantly helps the diagnosis since cardiac necrosis markers can result negative, whether they are measured several days after symptoms' onset. Certainly, cardiac MRI is a key diagnostic technique for myocarditis, but it is relatively expansive and not always available. Moreover, it is limited by patient-related factors, including claustrophobia.^[8]

Electrocardiographic abnormalities suggestive of myocarditis after the COVID-19 vaccine have already been described, but no case report, to our knowledge, has outlined the temporal evolution of the electrocardiographic changes.^[9]

A recent systematic review showed that electrocardiographic alterations were present in about two-thirds of patients with myocarditis after the mRNA COVID-19 vaccine, consisting, especially of ST-segment abnormalities.^[10]

Although the occurrence of myocarditis is more frequent in young men after the second dose of mRNA COVID-19 vaccine, our case shows that this diagnosis must be considered even in other situations (e.g. young women undergoing the first dose of mRNA COVID-19 vaccine).

In addition, our case highlights that the electrocardiographic abnormalities from COVID-19 vaccine myocarditis may take a long time to resolve, even in mild cases. At present, the prognostic significance of a later resolution of electrocardiographic abnormalities observed after COVID-19 vaccines is unknown. The present case suggests that a longer duration of ECG abnormalities is not associated with a worse course.

The pathogenetic mechanism underlying COVID-19 postvaccine myocardial damage is not yet understood, but it has been hypothesized that it could involve autoimmune phenomena.^[11] However, the risk of myopericarditis after the COVID-19 mRNA vaccine is so low that it should not discourage vaccination.^[12]

Surely, the identification of abnormalities of the ventricular repolarization after COVID-19 vaccination needs the

investigation of other pathologic conditions in differential diagnosis, including anemia, ionic imbalances, thyroid dysfunction, ischemic heart disease, and myopericarditis of other etiologies.

In conclusion, the present report describes a single case of subtle myocarditis induced by the COVID-19 vaccine in a young woman. Therefore, it could not be representative of the clinical course of patients of diverse ages and gender. However, it importantly demonstrates that electrocardiography, used in conjunction with other diagnostic examinations, significantly helps clinicians in the assessment and follow-up of patients with COVID-19 vaccine-related myocarditis.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient has given her consent for her images and other clinical information to be reported in the journal. The patient understands that her name and initials will not be published and due efforts will be made to conceal her identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Mallah SI, Ghorab OK, Al-Salmi S, Abdellatif OS, Tharmaratnam T, Iskandar MA, *et al.* COVID-19: Breaking down a global health crisis. *Ann Clin Microbiol Antimicrob* 2021;20:35.
2. Alcántara-Ayala I, Burton I, Lavell A, Mansilla E, Maskrey A, Oliver-Smith A, *et al.* Editorial: Root causes and policy dilemmas of the COVID-19 pandemic global disaster. *Int J Disaster Risk Reduct* 2021;52:101892.
3. Thompson MG, Burgess JL, Naleway AL, Tyner H, Yoon SK, Meece J, *et al.* Prevention and attenuation of COVID-19 with the BNT162b2 and mRNA-1273 vaccines. *N Engl J Med* 2021;385:320-9.
4. Gupta S, Cantor J, Simon KI, Bento AI, Wing C, Whaley CM. Vaccinations against COVID-19 may have averted up to 140,000 deaths in the United States. *Health Aff (Millwood)* 2021;40:1465-72.
5. Francis AI, Ghany S, Gilkes T, Umakanthan S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. *Postgrad Med J* 2022;98:389-94.
6. Ling RR, Ramanathan K, Tan FL, Tai BC, Somanji J, Fisher D, *et al.* Myopericarditis following COVID-19 vaccination and non-COVID-19 vaccination: A systematic review and meta-analysis. *Lancet Respir Med* 2022;10:679-88.
7. Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. *Circulation* 2021;144:471-84.
8. Clark DE, Aggarwal SK, Phillips NJ, Soslow JH, Dendy JM, Hughes SG. Cardiac magnetic resonance in the evaluation of COVID-19. *Card Fail Rev* 2022;8:e09.

9. Nassar M, Nso N, Gonzalez C, Lakhdar S, Alshamam M, Elshafey M, *et al.* COVID-19 vaccine-induced myocarditis: Case report with literature review. *Diabetes Metab Syndr* 2021;15:102205.
10. Woo W, Kim AY, Yon DK, Lee SW, Hwang J, Jacob L, *et al.* Clinical characteristics and prognostic factors of myocarditis associated with the mRNA COVID-19 vaccine. *J Med Virol* 2022;94:1566-80.
11. Writing Committee, Gluckman TJ, Bhave NM, Allen LA, Chung EH, Spatz ES, *et al.* 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: Myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: A report of the American College of Cardiology solution set oversight committee. *J Am Coll Cardiol* 2022;79:1717-56.
12. Haaf P, Kuster GM, Mueller C, Berger CT, Monney P, Burger P, *et al.* The very low risk of myocarditis and pericarditis after mRNA COVID-19 vaccination should not discourage vaccination. *Swiss Med Wkly* 2021;151:w30087.