

Epigenetic alterations in *Helicobacter pylori* infection leading to gastric carcinogenesis: A systematic review

Camilia Metadea Aji Savitri¹, Lita Diah Rahmawati², Awalia², Pradana Zaky Romadhon³, Langgeng Agung Waskito^{1,4,5}, Amal Arifi Hidayat⁴, Judith Annisa Ayu Rezkitha^{1,6}, Muhammad Miftahussurur^{1,7}, Yoshio Yamaoka^{7,8}

¹Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia,

²Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia, ³Division of Hematology and Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia, ⁴Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia, ⁵Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia, ⁶Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, East Java, Indonesia, ⁷Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia, ⁸Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan

Background: Gastric cancer (GC) is one of the top causes of cancer death worldwide, with 98% caused by *Helicobacter pylori*. The diverse disease presentation, asymptomatic *H. pylori* infection, and ineffective therapies lead to late diagnosis and high mortality. Chronic inflammation caused by *H. pylori* causes genetic and epigenetic modifications. Hence, this systematic review will address *H. pylori*-related DNA methylation, histone modifications, and RNA alteration in GC. **Materials and Methods:** A comprehensive search of PubMed and Scopus was performed for publications from 2017 to August 2022. Studies involving GC regardless of type and location, *H. pylori* infection regardless of virulence factors, and epigenetic changes (DNA methylation, histone modification, and RNA alteration) were included. Studies of epigenetic changes in GC unrelated to *H. pylori* were excluded. All types of studies were taken into the analysis. **Results:** A final analysis includes 26 manuscripts, comprising 10 reviews and 16 original articles. Methylation levels in various gene promoters having a role in host defense, cell integrity and cell cycle, DNA repair, and apoptosis were altered in *H. pylori* infection preceding GC. In addition, *H. pylori* regulate specific genes through histone modifications. Different MicroRNA expressions were found in *H. pylori* GC patients, some acting as a tumor suppressor and influencing drug resistance. *H. pylori* eradication, to a certain extent of disease, can revert these epigenetic changes. **Conclusion:** Understanding the exact mechanism leading to carcinogenesis is required for GC early diagnosis and precise therapy to alleviate the disease burden.

Key words: *Helicobacter pylori*, histone, infectious disease, microRNAs, virulence

How to cite this article: Savitri CMA, Rahmawati LD, Awalia, Romadhon PZ, Waskito LA, Hidayat AA, et al. Epigenetic alterations in *Helicobacter pylori* infection leading to gastric carcinogenesis: A systematic review. J Res Med Sci 2025;30:50.

INTRODUCTION

Helicobacter pylori, a bacterium inhabiting the stomach, is highly related to carcinogenesis development.^[1] It

is found to increase gastric cancer (GC) odds ratio of 5.9 times in 10 years within infection.^[2] In 2020, GC was in the fourth place for cancer deaths worldwide, with 1 million new cases. The high mortality was contributed

Access this article online	
Quick Response Code:	
Website:	https://journals.lww.com/jrms
DOI:	10.4103/jrms.jrms_705_22

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

Address for correspondence: Lita Diah Rahmawati, Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Jalan Mayjend Prof. Dr. Moestopo No. 6-8, Surabaya 60286, East Java, Indonesia.

E-mail: lita.diah@fk.unair.ac.id

Prof. Muhammad Miftahussurur, Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Jalan Mayjend Prof. Dr. Moestopo No. 6-8 Surabaya 60286, East Java, Indonesia.

E-mail: muhammad-m@fk.unair.ac.id

Submitted: 08-Oct-2022; **Revised:** 27-Jan-2023; **Accepted:** 31-Aug-2023; **Published:** 30-Sep-2025

by diverse disease presentations, leading to late diagnosis and insufficient effective therapies.^[3] Most of this disease occurred in East Asia and the male population.^[4] Even though multiple molecular biomarkers for GC have been found, the study of the molecular process involving the primary cause of GC is scarce.

With only 1%–3% of people colonized by *H. pylori* developing cancer,^[5] *H. pylori* causes approximately 98% of all GC cases.^[6] Various combinations of three to four antibiotics have been proposed as *H. pylori* eradication therapy, with a high rate of resistance worldwide.^[7] The risk factor for the infection includes poor hygiene and low economic level.^[8] Cytotoxin-associated gene A (*cagA*) and vacuolating cytotoxin A (*vacA*), two virulence factors owned by the bacteria, can induce genetic mutations.^[9] Despite carrying various virulence factors able to disrupt signaling pathways in the human body, chronic inflammation of *H. pylori* triggered posttranslational modification in genes.^[10] Both genetic and epigenetic modification of protooncogenes and tumor-suppressor genes result in the development of cancer.^[11] Widely known epigenetic changes related to *H. pylori* carcinogenesis are hypermethylation in gene promoters.^[12] The collection of abnormal methylation in chronic infection creates an “epigenetic field defect” prone to GC.^[13] In addition to DNA methylation, few histone modifications and altered ncRNA expression have been found as probable mechanisms.^[6]

As epigenetic modification is a dynamic process, a comprehensive understanding of epigenetic changes could provide an alternative for emerging biomarkers and epigenetic therapy for GC. While *H. pylori* is a significant risk factor, knowing the process related to its infection is imperative. Understanding the specific molecular process to identify susceptible populations will help reduce the disease burden. This systematic review addressed the epigenetic mechanism in *H. pylori*-related GC. Hence, the knowledge could be used as diagnostic and therapeutic initiatives to reduce GC mortality.

MATERIALS AND METHODS

Eligibility criteria

We include studies covering GC of any type and location (both cardia and noncardia) regardless of any demographic characteristics. The inclusion criteria include *H. pylori* infection regardless of *CagA* status and epigenetic changes (DNA methylation, histone modification, and RNA alteration). All studies addressing the relation between GC and the above were included. We excluded studies mentioning epigenetic changes in GC not caused by *H. pylori* and epigenetic therapies.

Information sources

We searched PubMed and Scopus. We include papers from 2017 to 2022. The following terms were searched: gastric cancer OR gastric carcinogenesis OR stomach cancer AND *H. pylori* OR *H. pylori* AND epigenetic OR epigenetic changes OR epigenetic modification. All articles must be in English.

Study selection

The search results from all databases were combined. The author screened the title and abstracts and then excluded unqualified studies. Afterward, the full text was retrieved for further evaluation. The complete flow of the study selection is presented in Figure 1.

RESULTS

We included 26 manuscripts in our study. Most studies were excluded due to not mentioning specific *H. pylori*-related epigenetic changes.

Epigenetic modification in gastric cancer

GC is in the top five cancer^[14] worldwide^[15] and is the second for cancer-related deaths.^[16] It is the final consequence of genetic and epigenetic alterations.^[17] As a risk factor for this disease,^[18] *H. pylori* has been reported to elicit multiple modifications through its chronic inflammation pathways.^[19] Despite being classified by the World Health Organization as a Group I carcinogen,^[16] the exact mechanism of how *H. pylori* induce cancer has been investigated over the years. In *H. pylori* infection, methylation levels were generally increased, even in noncancerous mucosa of GC patients.^[20] These changes were proposed as the concept of “epigenetic-field-defect” predisposing to carcinogenesis.^[21] Chronic inflammation is recognized as an accelerant to the accumulation of abnormal methylation.^[14]

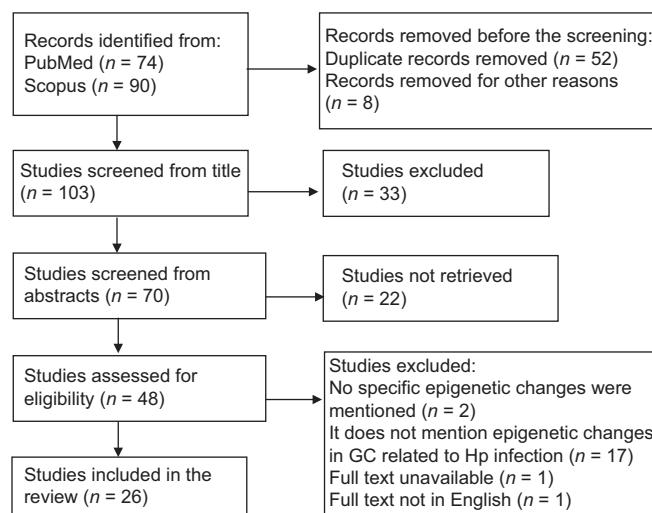


Figure 1: Flow diagram for the study selection based on PRISMA 2020

As DNA methylation is an essential mechanism and can be induced by *H. pylori*, other epigenetic alterations surfaced as possible mechanisms, such as histone modification and MicroRNA (miRNA) alterations. miRNA popularity rises as an essential apparatus for the post-transcriptional regulator, regulating gene expression by disrupting transcription and mRNA cleavage.^[22] Studies have proposed miRNA to have a role in GC since it was found to be aberrantly expressed in cancers.^[23] Moreover, *H. pylori* infection could upregulate or downregulate particular miRNA, supporting gastric carcinogenesis.^[24]

DNA methylation

DNA methylation arises when cytosine in cytosine-guanine dinucleotide is transformed into methylcytosine.^[25] The promoter region of genes has these cytosine-guanine-rich regions (CpG islands). In a normal state, most CpG dinucleotides are methylated,^[26] except those in CpG islands.^[27,28] Through hypermethylation, the binding of transcription factors will be blocked, and the genes lose their expression.^[15] Various genes are methylated by *H. pylori* infection, leading to silencing these genes and promoting carcinogenesis.^[6,15] DNA methyltransferases (DNMTs) regulate DNA methylation pattern. DNMT expression was higher in *H. pylori*-associated gastritis than in carcinoma, probably due to the lack of inflammation-inducing gastritis in the carcinoma state.^[29] A study analyzing methylation patterns in *H. pylori*-related GC found 438 differently methylated regions with 152 regions increased disease risk regardless of the infection status.^[30] On the other hand, some studies suggested that *H. pylori* infection's chronic inflammation triggers epigenetic changes instead of the bacteria itself.^[31,32] Continuous epigenetic changes in previously normal cells were suggested to predispose them to carcinogenesis.^[3]

H. pylori has a unique adaptive mechanism as it can survive and thrive in a hostile gastric environment. Despite neutralizing acidity with urease,^[26,33] *H. pylori* bind to gastric mucosa through adhesin and nonadhesin. Human, as the host, has mucins to defend gastric epithelial cells from this pathogen. MUC-17 is a membrane-bound mucin used by the host to limit bacterial adherence and prevent *CagA* translocation and GC cell proliferation through tampering with the NF-B pathway. However, *H. pylori* hypermethylated the MUC-17 promoter, downregulating MUC17 expression.^[34] In an array of virulence factors possessed by *H. pylori*,^[33] *cag* pathogenicity island, which encodes the type IV secretion system (T4SS), was related to increased DNA methylation.^[15] T4SS can transfer *cagA* and cause morphological changes in gastric epithelial cells called hummingbird phenotypes.^[19,26] Consequently, *cagA* causes activation of Raf-MEK-ERK signaling, MAP kinase, activator protein-1 transcription factors, and c-fos and

c-jun proto-oncogenes.^[26] For the most part, *CagA*-positive *H. pylori* infection had substantial methylation compared to *Cag-A* negatives.^[33]

The inflammation caused by *H. pylori* activates multiple cytokines originating from T-helper 1 (Th-1), Th-2, Th-17, and T-regulatory.^[25,26] These cytokines activate Janus kinase 2 (JAK-2), which subsequently phosphorylates signal transducers and activators of transcription 3 (STAT3). STAT 3 will then go into the nucleus to regulate genes. JAK/STAT cascade is negatively modulated by the suppressor of cytokine signaling 1 (SOCS-1). *H. pylori* induces methylation in SOCS-1 promoters, increasing cytokine production and leading to GC.^[25] Moreover, the increased cytokine production, such as interleukin-1 β (IL-1 β), can induce aberrant DNA methylation.^[15,19,33] Chronic *H. pylori* infection increases methylation of the trefoil factor 2 (TFF2), rendering wound healing and supporting persistent inflammation.^[15,19] Wnt/ β -catenin signaling is involved in many cancers as it has a crucial role in cell function.^[35] *H. pylori* upregulates Wnt/ β -catenin activators by downregulating TFF1 and RUNX3.^[6] This pathway is inactivated by promoter methylation of Wnt antagonists such as secreted frizzled-related protein and DICKKOPF (DKK), all found upregulated in *H. pylori* infection-related GC.^[20] In addition, *H. pylori* infection triggers the expression of caudal-type homeobox 1 and 2 (CDX1/2), which are generally not found in gastric mucosa. CDX are transcription factors for the differentiation of the intestinal cell. CDX1 promoter methylation was low during *H. pylori*-related gastritis and intestinal metaplasia then rose in GC. GC patients with higher CDX levels were shown to have a better prognosis. This bimodal action suggests that CDX can act as an oncogene and tumor suppressor.^[36]

Metastasis in GC is known to be attributed to several gene mutations. However, in the last years, hypermethylation of genes came into light as a contributor to epithelial-mesenchymal transition. Cadherin-1 (CDH-1), known as epithelial cadherin (E-cadherin), is pivotal in maintaining cell junction.^[37] Loss of CDH-1 results in the development of metastasis.^[38] The gene encoding E-cadherin, CDH-1, was genetically and epigenetically altered in cancers.^[37-39] CDH-1 hypermethylation level was higher in GC and *H. pylori* infection.^[15,19] In addition, *H. pylori* induce hypermethylation of vezatin (VEZT),^[15] a gene encoding adherents junction transmembrane protein.^[40]

Methylation silencing of tumor-suppressor genes by *H. pylori* dismissed the host's natural defense against abnormal changes. Uncontrolled cancer cell growth is contributed by disrupted cell cycle regulation found in the methylation of promoter CDKN2A.^[15,19] This gene encodes protein acting in the G1 cell cycle.^[15] *H. pylori* eradication

reverses the aberrant methylation in *CDKN2A*.^[19] Moreover, impairment in autophagy elicits irreparable DNA damage leading to carcinogenesis. *H. pylori* was found to hypermethylate *MAP1LC3A*; the gene for autophagy,^[41] *MHL1*; a gene encoding DNA repair protein, and *MGMT*.^[15,19] *HUS1* has a role in DNA damage repair and apoptosis, and *INTS1* in DNA damage response was some example of genes hypermethylated by *H. pylori* infection.^[12] Macrophages in *H. pylori* infection produce nitric oxides, leading to hypermethylation of *RUNX3* in epithelial cells.^[33] With the surmounting methylation of *RUNX3*^[15] and forkhead box D3 (*FOXD3*), these gene tumor suppressor function is inactivated.^[19,42] *LOX*, which plays an essential role in extracellular matrix assembly,^[43] was methylated in *H. pylori* patients.^[15] Moreover, *GATA-4* and *GATA-5* were both found to be methylated in GC.^[6,19] In *H. pylori*-related GC, downregulated *GATA-5* was seen compared to *H. pylori*-positive gastritis subjects.^[44] Both *GATA* is tumor suppressor genes.^[6] Reduced *GATA* expression caused cell failure to quit cell cycle.^[44] *CYLD* encodes a deubiquitinating enzyme, inhibiting the NF-B pathway, which was deregulated in many cancers. It was suggested to increase resistance to apoptosis when dysregulated.^[11,45] Phosphate and tensin homolog (*PTEN*) alterations affect cell cycle, migration, and DNA repair.^[46] Both *CYLD*^[11] and *PTEN* were reduced in *CagA*-positive *H. pylori* patients.^[15,19] Multiple studies have mentioned *H. pylori* eradication to lower DNA methylation. However, methylation level could not regress into the previously noninfected state.^[3]

Histone modifications

Histone tails in the chromatin are prone to modification, either acetylation, methylation, phosphorylation, ubiquitylation, or ADP ribosylation.^[26] Enhancer of zeste homolog (EZH2) is a significant histone modification apparatus responsible for the trimethylation of a lysine residue in H3. Higher EZH2 expression was found in *H. pylori*-associated gastritis, mucosa adjacent to carcinoma, and GC.^[29] Modification in histone H3 serine 10 (H3Ser10) has been reported to involve in carcinogenesis.^[47] H3Ser10 has a role in stimulating cancer cells induced by epidermal growth factor, and *H. pylori* infection increases its expression.^[19,26] Moreover, H3Ser10 is a mitotic marker in which *H. pylori* affect the cell cycle. The accumulation of phosphorylated H3 was correlated with the poor prognosis in GC patients.^[47] In a DNA strand break (DSB) event, after recognition, ataxia-telangiectasia mutated serine/threonine kinase (ATM) will induce DSB repairing protein. In *H. pylori* infection, the *ATM* gene can be regulated posttranscriptionally by hyperacetylation of H3/H4.^[19,26,48] *ATM* initiation by *H. pylori* requires T4SS and *vacA* secretion.^[48] In addition, *let-7* expression is reduced by *H. pylori* *CagA* through histone modification.^[49] *H. pylori* infection can induce an epigenetic regulator histone lysine demethylase 4B (KDM4B), which in turn increases IL-8

production and can give rise to tumor migration and invasion.^[50]

RNA alterations

miRNA and long noncoding RNA (lncRNA) can regulate gene expressions. miRNA are approximately 20 nucleotides long^[38] and can have either oncogenic roles or tumor suppressors. It is expressed differently in diseases, opening the probability for usage as biomarkers.^[33] On the other hand, lncRNAs are 200 nucleotides long and originated from the transcription of lagging DNA strands.^[51] miR-133, having a suppressor role in multiple cancers,^[49] was inhibited through promoter methylation by *H. pylori*.^[19] Multiple molecules such as transcription factor Sp1, antiapoptotic molecules, and Bcl-xL are targets of miR-133a. *H. pylori* eradication can undo methylation silencing of miR-133a.^[49] miR-204 was downregulated by hypermethylation in *H. pylori*-infected cells and GC.^[1] This miRNA repressed the activation of the NF-B pathway. Moreover, it can inhibit the proliferation and metastasis of GC cells *in vivo*.^[1] HOXA10, SOX4, and IL-11 are the targets for miR-204.^[52] Upregulation of miR-204 could suppress EMT by targeting snai1,^[53] and its expression was relieved after *H. pylori* eradication.^[33] A study examining miR-193a, a miRNA involved in JAK/STAT signaling, showed that miR-193a is silenced *in vitro*, causing proliferation and metastasis. Clinically, the methylation level was higher in *H. pylori* infection patients.^[23] In addition, miR-148a, which inhibits MMP-7 for invasion and migration by E-cadherin cleavage, was downregulated by *H. pylori* infection.^[52] miR-370, which regulates cell proliferation, was hindered by *H. pylori*,^[51] making way for GC proliferation and migration.^[54] JARID1B, one of the histone demethylases involved in carcinogenesis, was regulated by miR-29c. In *H. pylori* infection, miR-29c was downregulated, promoting GC cell proliferation through this mechanism.^[55] Promoter methylation of miR-133a by *H. pylori* was associated with GC as it targets the Sp1 transcription factor, IGF-1 receptor, and Bcl.^[19]

Some miRNA was found to be upregulated in GC. miR-21 took part in the PI3K/AKT signaling pathway to regulate the balance of cell proliferation and apoptosis and was upregulated. Inflammation caused by *H. pylori* leads to the activation of the NF-B signaling pathway, consequently increasing the expression of miR-135b.^[52] *H. pylori*-related GC tissue showed an increase in miR-223-3p level,^[51] which induces GC proliferation and invasion.^[56] Both miR-135b and miR-223-3p inhibit apoptosis and contribute to cisplatin resistance.^[52,56] In addition, overexpressed miR-155 by *H. pylori* infection led to GC,^[33,51] as miR-155 encouraged cell growth and migration through TGF β R2.^[57] miR-155 is abundant in activated B-cells, T-cells, monocytes, and macrophages in chronic gastric inflammation.^[24] miR-155 and miR-223 are proportionally increased to Correa's

Table 1: Epigenetic changes in gastric cancer related to *Helicobacter pylori* infection

Epigenetic changes	Study	Epigenetic target	Mechanism	Role in carcinogenesis
DNA methylation	Lin et al., 2019 ^[34]	MUC17	Hp downregulate MUC17 expression through hypermethylation of MUC17 promoter regulated by DNMT1	Prevent the translocation of <i>CagA</i>
	Muhammad, Eladl and Khoder, 2019; Yousefi et al., 2019 ^[15,19]	CDKN2A	Methylation leads to disruption of cell cycle inhibition	Disrupted tumor inhibition
	Muhammad, Eladl and Khoder, 2019; Yousefi et al., 2019; Hudler, 2017; George et al., 2020 ^[6,15,19,38]	E-cadherin (CDH1 gene)	Methylation induces gene silencing	Onco-suppressor, associated with epithelial-mesenchymal transition
	Muhammad, Eladl and Khoder, 2019; Yousefi et al., 2019 ^[15,19]	VZT	Expression is suppressed by hypermethylation of gene promoter	Tumor suppressor
	Yousefi et al., 2019 ^[19]	hMHL-1 gene	Hypermethylation in promoter	DNA repair protein
	Muhammad, Eladl and Khoder, 2019 ^[15]	MGMT	Reduced methylation found after Hp eradication	DNA repair protein
	Muhammad, Eladl and Khoder, 2019; Yousefi et al., 2019 ^[15,19]	TFF2 gene	Methylation in promoter	Interferes ulcer healing
	Yousefi et al., 2019, Vahidi et al., 2022 ^[19,33]	RUNX3	Hp accentuate RUNX3 gene promoter methylation	Disrupted tumor inhibition function and several tumor genes
	Muhammad, Eladl and Khoder, 2019 ^[15]	FOXD3	Hp elevate the FOXD3 methylation	Inhibit proliferation, facilitate apoptosis
	Wang et al., 2021 ^[12]	HUS1 gene	Hp infection downregulates HUS1 expression through hypermethylation	DNA damage repair and apoptosis
	Wang et al., 2021 ^[12]	INTS1	Hp downregulate expression via promoter methylation	DNA damage repair
	Muhammad, Eladl and Khoder, 2019 ^[15]	LOX gene	Highly methylated LOX gene in Hp infection patients	Extracellular matrix remodeling and angiogenesis
	Ghadami et al., 2018, Muhammad, Eladl and Khoder, 2019 ^[11,15]	CYLD gene	Hypermethylation reduces CYLD expression	Tumor suppressor
	Muhammad, Eladl and Khoder, 2019 ^[15]	PTEN	Expression level decreased in GC tissues with <i>CagA</i> + Hp infection	Apoptosis, cell cycle and proliferation
	Jan et al., 2021 ^[25]	SOCS-1	Hp induce SOCS-1 gene promotor, activating JAK/STAT pathway	Increase cytokine production, hyperactivate JAK/STAT pathway
	Alvarez et al., 2018 ^[44]	GATA5	Hp induces promoter methylation	Transcription factor
	Yang et al., 2017 ^[20]	Wnt antagonist (SFRP and DKK)	Hp methylate SFRP and DKK promoter	Activation of Wnt/-catenin pathway
	Chen et al., 2020 ^[36]	CDX	Promoter methylation	Oncogene in IM, tumor suppressor in GC
Histone modification	Yousefi et al., 2019; Yang, et al., 2018 ^[19,47]	p-H3Ser10	Hp enlarged p-H3Ser10 expression	p-H3Ser10 stimulate neoplastic cells
	Santos et al., 2018, Yousefi et al., 2019, KZK et al., 2020 ^[19,26,48]	ATM gene	Regulate ATM gene via hyperacetylation H3/H4	DSB repair
	Wu et al., 2019 ^[50]	KDM4B	Hp induce KDM4B	Increase IL-8 production
RNA-based modification	Pereira et al., 2019 ^[52]	miR-21	miR-21 is overexpressed in Hp infection	Alter PI3k/Akt signaling pathway, disturb apoptosis
	Yousefi et al., 2019, Gong et al., 2022 ^[17,51]	miR-133	Hp associated with miR-133 promoter methylation	Ts-miRNA
	Lim et al., 2018 ^[49]	miR-133a		
	Pereira et al., 2019 ^[52]	miR-135b	Hp infection induces expression of miR-135b	Inhibit apoptosis, increase cisplatin resistance
	Pereira et al., 2019 ^[52]	miR-148a	Hp infection induces downregulation of miR-148a	Inhibition of MMP, induce migration and invasion of GC
	Chen et al., 2020; Pereira et al., 2019 ^[36,52]	miR-204	miRNA-204 expression is suppressed after Hp infection caused by aberrant promoter methylation	Suppressed TNF, inhibit tumor growth and metastasis
	Gong et al., 2022 ^[51]	miR-223-3p	Hp infection increase miR-223-3p level	GC proliferation and invasion, cisplatin resistance

Contd...

Table 1: Contd...

Epigenetic changes	Study	Epigenetic target	Mechanism	Role in carcinogenesis
Gong et al., 2022; Vahidi et al., 2022; Link et al., 2018 ^[33,51,58]		miR-155	Hp induce overexpression	Cell growth and migration
Gong et al., 2022 ^[51]		miR-370	Hp induce downregulation	Cell proliferation
Zheng, et al., 2021 ^[55]		miR-29c	Hp downregulates miR-29c expression; hence, upregulates JARID1B expression	JARID1B promotes GC cell proliferation
Wei et al., 2021 ^[23]		miR-193a	Methylation of miR-193a is higher in Hp infected patient	Tumor metastasis
Choi et al., 2020 ^[13]		miR-200a/b	Promotor is highly methylated in GC	Tumor suppressor
Lim et al., 2018 ^[49]		Let-7	<i>CagA</i> downregulates let-7 expression	Tumor development and progression

Hp=*Helicobacter pylori*; H. pylori=*Helicobacter pylori*; GC=Gastric cancer; VZT=Vezatin; CDH1=Cadherin 1; FOXD3=Forkhead box D3; TFF2=Trefoil factor 2; *CagA*=Cytotoxin-associated gene A; MicroRNA; LOX=Lysyl oxidase; PTEN=Phosphate and tensin homolog; SOCS-1=Suppressor of cytokine signaling 1; SFRP=Secreted frizzled-related protein; DKK=DICKKOPF; CDX=Caudal-type homeobox; ATM=Ataxia-telangiectasia mutated serine/threonine kinase; KDM4B=Demethylase 4B; JAK=Janus kinase; STAT=Signal transducers and activators of transcription; IL=Interleukin; DNMT=DNA methyltransferase; miRNA=MicroRNA; TNF=Tumor necrosis factor; MMP=Matrix metalloproteinase; IM=Intestinal metaplasia

cascade in gastric epithelial cells.^[58] miR-200a/b, acting as a tumor suppressor in GC, is highly methylated in GC, reducing its expression. Eradication of *H. pylori* ensued in a decrease in methylation level.^[13] Overall, *H. pylori* infection can create pathways deregulation leading to carcinogenesis.

Challenges

GC pathogenesis is inseparable from epigenetic modifications. As *H. pylori* cause most GC, understanding the mechanism of how this bacterium leads to carcinogenesis is essential. *H. pylori* interacts with epithelial cells through various virulence factors, which alter signaling pathways.^[59] Hypermethylation of promoters has long been known as an underlying cause besides histone modification and the involvement of miRNA. Chronic inflammation by *H. pylori* enhances the methylation of gene promoters related to the host's protection (e.g., MUC17 and TFF-2), host immune system (e.g., RUNX3 and SOCS-1), epithelial cell integrity (e.g., CDH-1, VZT, and LOX), cell proliferation (e.g., CDKN2A, PTEN, GATA5, and CDX), DNA repair apparatus (e.g., MHL-1, MGMT, HUS1, and INTS1), and apoptosis (e.g., FOXD3, HUS1, and CYLD). Histone modifications of phosphorylated H3Ser10 found in many cancers were also found in *H. pylori*-related GC. In addition, ATM and KDM4B genes were regulated through histone modification. Different miRNA expression is identified in *H. pylori*-related GC patients, with some acting as oncogenes, tumor suppressors, or both. Compilations of epigenetic changes in *H. pylori* infection-related GC are compiled in Table 1. Some studies showed that eradicating *H. pylori* reverses the degree of epigenetic changes. However, some showed that these changes are permanent when reaching intestinal metaplasia.

Despite many molecular mechanisms, there were few original articles to be found. The limited sources found probably showed the need for more searching and proving

specific genes or miRNAs responsible for the exact process of carcinogenesis. Understanding genomic and epigenomic abnormalities over time is one of the enormous challenges of GC progression stemming from *H. pylori* infection. More in-depth studies are needed to improve GC treatment options. Moreover, identifying the process responsible could be a novel target for GC therapy. Understanding this process would also help to develop drugs with enhanced precision. Overall, finding the genetic and epigenetic alterations in *H. pylori* infection preceding cancer is a valuable tool for possible disease detection, improved patient prognosis, and appropriate treatment.

CONCLUSION

Research in genetic and epigenetic alterations in cancer has been developing over the years. However, as the leading cause of GC, the molecular mechanism behind *H. pylori* infection-causing carcinogenesis remained vague. Studies were mostly taken as a one-point event instead of the long-term observations. More studies are needed to broaden our understanding of the *H. pylori* inflammation process to elicit cancer. In addition, having a biomarker specific to GC prognosis and a particular gene or process to target in therapy will vastly improve the morbidity and mortality of GC worldwide.

Financial support and sponsorship

This study was financially supported by Research and Community Service Universitas Airlangga.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Chen P, Guo H, Wu X, Li J, Duan X, Ba Q, et al. Epigenetic silencing of microRNA-204 by *Helicobacter pylori* augments the NF- κ B

signaling pathway in gastric cancer development and progression. *Carcinogenesis* 2020;41:430-41.

- Rawla P, Barsouk A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. *Prz Gastroenterol* 2019;14:26-38.
- Padmanabhan N, Ushijima T, Tan P. How to stomach an epigenetic insult: The gastric cancer epigenome. *Nat Rev Gastroenterol Hepatol* 2017;14:467-78.
- Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020 – An overview. *Int J of Cancer* 2021;149:788-9.
- Vaziri F, Tarashi S, Fateh A, Siadat SD. New insights of *Helicobacter pylori* host-pathogen interactions: The triangle of virulence factors, epigenetic modifications and non-coding RNAs. *World J Clin Cases* 2018;6:64-73.
- George S, Lucero Y, Torres JP, Lagomarcino AJ, O’Ryan M. Gastric damage and cancer-associated biomarkers in *Helicobacter pylori*-infected children. *Front Microbiol* 2020;11:90.
- Sadeghi H, Narimani T, Tabesh E, Shafiee F, Soltani R. Antibiotic resistance pattern of *Helicobacter pylori* strains isolated from patients in Isfahan, Iran. *J Res Med Sci* 2022;27:39.
- Sirkeci Ö, Sirkeci E, Ulaş T. Does waterpipe smoking increase the risk of *Helicobacter pylori* infection? *J Res Med Sci* 2022;27:7.
- Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. *Int J Mol Sci* 2020;21:4012.
- Maeda M, Yamashita S, Shimazu T, Iida N, Takeshima H, Nakajima T, et al. Novel epigenetic markers for gastric cancer risk stratification in individuals after *Helicobacter pylori* eradication. *Gastric Cancer* 2018;21:745-55.
- Ghadami E, Nikbakhsh N, Fattah S, Kosari-Monfared M, Ranaee M, Taheri H, et al. Epigenetic alterations of CYLD promoter modulate its expression in gastric adenocarcinoma: A footprint of infections. *J Cell Physiol* 2019;234:4115-24.
- Wang H, Li NS, He C, Xie C, Zhu Y, Lu NH, et al. Discovery and validation of novel methylation markers in *Helicobacter pylori*-associated gastric cancer. *Dis Markers* 2021; p. 1-11.
- Choi JM, Kim SG, Yang HJ, Lim JH, Cho NY, Kim WH, et al. *Helicobacter pylori* eradication can reverse the methylation-associated regulation of miR-200a/b in gastric carcinogenesis. *Gut Liver* 2020;14:571-80.
- Usui G, Matsusaka K, Mano Y, Urabe M, Funata S, Fukayama M, et al. DNA methylation and genetic aberrations in gastric cancer. *Digestion* 2021;102:25-32.
- Muhammad JS, Eladl MA, Khoder G. *Helicobacter pylori*-induced DNA methylation as an epigenetic modulator of gastric cancer: Recent outcomes and future direction. *Pathogens* 2019;8:23.
- Nakanishi R, Shimizu T, Kumagai K, Takai A, Marusawa H. Genetic pathogenesis of inflammation-associated cancers in digestive organs. *Pathogens* 2021;10:453.
- Figueiredo C, Camargo MC, Leite M, Fuentes-Pananá EM, Rabkin CS, Machado JC. Pathogenesis of Gastric Cancer: Genetics and Molecular Classification. *Curr Top Microbiol Immunol* 2017;400:277-304.
- Morgan E, Arnold M, Camargo MC, Gini A, Kunzmann AT, Matsuda T, et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: A population-based modelling study. *EClinicalMedicine* 2022;47:101404.
- Yousefi B, Mohammadalou M, Abdollahi M, Salek Farrokhi A, Karbalaei M, Keikha M, et al. Epigenetic changes in gastric cancer induction by *Helicobacter pylori*. *J Cell Physiol* 2019;234:21770-84.
- Yang HJ, Kim SG, Lim JH, Choi JM, Kim WH, Jung HC. *Helicobacter pylori*-induced modulation of the promoter methylation of Wnt antagonist genes in gastric carcinogenesis. *Gastric Cancer* 2018;21:237-48.
- Tahara S, Tahara T, Tuskamoto T, Horiguchi N, Kawamura T, Okubo M, et al. Morphologic characterization of residual DNA methylation in the gastric mucosa after *Helicobacter pylori* eradication. *Cancer Med* 2017;6:1730-7.
- Sonohara F, Inokawa Y, Hayashi M, Kodera Y, Nomoto S. Epigenetic modulation associated with carcinogenesis and prognosis of human gastric cancer. *Oncol Lett* 2017;13:3363-8.
- Wei KL, Chou JL, Chen YC, Low JT, Lin GL, Liu JL, et al. Epigenetic silencing of STAT3-targeted miR-193a, by constitutive activation of JAK/STAT signaling, leads to tumor progression through overexpression of YWHAZ in gastric cancer. *Front Oncol* 2021;11:575667.
- Prinz C, Weber D. MicroRNA (miR) dysregulation during *Helicobacter pylori*-induced gastric inflammation and cancer development: Critical importance of miR-155. *Oncotarget* 2020;11:894-904.
- Jan I, Rather RA, Mushtaq I, Malik AA, Besina S, Baba AB, et al. *Helicobacter pylori* subdues cytokine signaling to alter mucosal inflammation via hypermethylation of suppressor of cytokine signaling 1 gene during gastric carcinogenesis. *Front Oncol* 2020;10:604747.
- Kzk AA, Al-Abodi HR, Ghaidaa Raheem LA, Alghanimi YK, Alshammari MM, Mirforoughi SA. *Helicobacter pylori* virulence factors expression affect epigenetic factors leading to gastrointestinal carcinoma. *Rev Res Med Microbiol* 2020;31:117-25.
- Jeziorska DM, Murray RJ, De Gobbi M, Gaentzsch R, Garrick D, Ayyub H, et al. DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. *Proc Natl Acad Sci U S A* 2017;114:E7526-35.
- Clerici SP, Oliveira PF, Akagi EM, Cordeiro HG, Azevedo-Martins JM, Faria AV, et al. A comprehensive review on the role of protein tyrosine phosphatases in gastric cancer development and progression. *Biol Chem* 2021;402:663-74.
- Purkait S, Patra S, Mitra S, Behera MM, Panigrahi MK, Kumar P, et al. Elevated expression of DNA methyltransferases and enhancer of zeste homolog 2 in *Helicobacter pylori* – Gastritis and gastric carcinoma. *Dig Dis* 2022;40:156-67.
- Woo HD, Fernandez-Jimenez N, Ghantous A, Degli Esposti D, Cuenin C, Cahais V, et al. Genome-wide profiling of normal gastric mucosa identifies *Helicobacter pylori*- and cancer-associated DNA methylome changes. *Int J Cancer* 2018;143:597-609.
- Maeda M, Moro H, Ushijima T. Mechanisms for the induction of gastric cancer by *Helicobacter pylori* infection: Aberrant DNA methylation pathway. *Gastric Cancer* 2017;20:8-15.
- Fattah S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH, Akhavan-Niaki H. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. *Life Sci* 2020;262:118513.
- Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA methylation on the molecular pathogenesis of *Helicobacter pylori* in gastric cancer; targeted therapy approach. *J Pharmacopuncture* 2022;25:88-100.
- Lin S, Zhang Y, Hu Y, Yang B, Cui J, Huang J, et al. Epigenetic downregulation of MUC17 by *H. pylori* infection facilitates NF-κB-mediated expression of CEACAM1-3S in human gastric cancer. *Gastric Cancer* 2019;22:941-54.
- Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, et al. Wnt/beta-catenin pathway: Modulating anticancer immune response. *J Hematol Oncol* 2017;10:101.
- Chen HY, Hu Y, Lu NH, Zhu Y. Caudal type homeoboxes as a driving force in *Helicobacter pylori* infection-induced gastric intestinal metaplasia. *Gut Microbes* 2020;12:1-12.
- Zeng W, Zhu J, Shan L, Han Z, Aerxiding P, Quhai A, et al. The clinicopathological significance of CDH1 in gastric cancer:

A meta-analysis and systematic review. *Drug Des Devel Ther* 2015;9:2149-57.

38. Hudler P. Outlook on epigenetic therapeutic approaches for treatment of gastric cancer. *Curr Cancer Drug Targets* 2018;18:65-88.

39. Benesch MG, Bursey SR, O'Connell AC, Ryan MG, Howard CL, Stockley CC, et al. CDH1 gene mutation hereditary diffuse gastric cancer outcomes: Analysis of a large cohort, systematic review of endoscopic surveillance, and secondary cancer risk postulation. *Cancers (Basel)* 2021;13:2622.

40. Miao R, Guo X, Zhi Q, Shi Y, Li L, Mao X, et al. VEZT, a novel putative tumor suppressor, suppresses the growth and tumorigenicity of gastric cancer. *PLoS One* 2013;8:e74409.

41. Muhammad JS, Nanjo S, Ando T, Yamashita S, Maekita T, Ushijima T, et al. Autophagy impairment by *Helicobacter pylori*-induced methylation silencing of MAP1LC3Av1 promotes gastric carcinogenesis. *Int J Cancer* 2017;140:2272-83.

42. Chen F, Liu X, Bai J, Pei D, Zheng J. The emerging role of RUNX3 in cancer metastasis (Review). *Oncol Rep* 2016;35:1227-36.

43. Laczkó R, Csiszar K. Lysyl oxidase (LOX): Functional contributions to signaling pathways. *Biomolecules* 2020;10:1093.

44. Alvarez MC, Fernandes J, Michel V, Touati E, Ribeiro ML. Effect of *Helicobacter pylori* infection on GATA-5 and TFF1 regulation, comparison between pediatric and adult patients. *Dig Dis Sci* 2018;63:2889-97.

45. Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ. The tumor suppressor CYLD regulates entry into mitosis. *Proc Natl Acad Sci U S A* 2007;104:8869-74.

46. Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE. PTEN function: The long and the short of it. *Trends Biochem Sci* 2014;39:183-90.

47. Yang TT, Cao N, Zhang HH, Wei JB, Song XX, Yi DM, et al. *Helicobacter pylori* infection-induced H3Ser10 phosphorylation in stepwise gastric carcinogenesis and its clinical implications. *Helicobacter* 2018;23:e12486.

48. Santos JC, Gambeloni RZ, Roque AT, Oeck S, Ribeiro ML. Epigenetic mechanisms of ATM activation after *Helicobacter pylori* infection. *Am J Pathol* 2018;188:329-35.

49. Lim JH, Kim SG, Choi JM, Yang HJ, Kim JS, Jung HC. *Helicobacter pylori* is associated with miR-133a expression through promoter methylation in gastric carcinogenesis. *Gut Liver* 2018;12:58-66.

50. Wu MC, Cheng HH, Yeh TS, Li YC, Chen TJ, Sit WY, et al. KDM4B is a coactivator of c-Jun and involved in gastric carcinogenesis. *Cell Death Dis* 2019;10:68.

51. Gong YQ, Lu TL, Hou FT, Chen CW. Antisense long non-coding RNAs in gastric cancer. *Clin Chim Acta* 2022;534:128-37.

52. Pereira AL, Magalhães L, Moreira FC, Reis-das-Mercês L, Vidal AF, Ribeiro-Dos-Santos AM, et al. Epigenetic field cancerization in gastric cancer: MicroRNAs as promising biomarkers. *J Cancer* 2019;10:1560-9.

53. Liu Z, Long J, Du R, Ge C, Guo K, Xu Y. miR-204 regulates the EMT by targeting snai1 to suppress the invasion and migration of gastric cancer. *Tumour Biol* 2016;37:8327-35.

54. Ning T, Zhang H, Wang X, Li S, Zhang L, Deng T, et al. [Corrigendum] miR-370 regulates cell proliferation and migration by targeting EGFR in gastric cancer. *Oncol Rep* 2022;48:194.

55. Zheng L, Wu Y, Shen L, Liang X, Yang Z, Li S, et al. Mechanisms of JARID1B Up-regulation and its role in *Helicobacter pylori*-induced gastric carcinogenesis. *Front Oncol* 2021;11:757497.

56. Ren N, Jiang T, Wang C, Xie S, Xing Y, Piao D, et al. LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. *Aging (Albany NY)* 2020;12:11025-41.

57. Yin L, Liu T, Li C, Yan G, Li C, Zhang J, et al. The MRTF-A/miR-155/SOX1 pathway mediates gastric cancer migration and invasion. *Cancer Cell Int* 2020;20:303.

58. Link A, Kupcinskas J. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: Current insights and future perspectives. *World J Gastroenterol* 2018;24:3313-29.

59. Capparelli R, Iannelli D. Epigenetics and *Helicobacter pylori*. *Int J Mol Sci* 2022;23:1759.