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trauma (20%) cause a significant part of trauma‑related 
deaths.[3] In emergency departments, most of the cases 
involving abdominal trauma  (80%) are classified as 
“blunt abdominal trauma”  (BAT) and the mortality 
rate for this type of trauma is much higher than that for 
penetrating trauma.[4] This kind of trauma is a significant 
diagnostic challenge in most cases. Patients with severe 
injuries and continuous bleeding need immediate 
identification and treatment.[5] Abdominal trauma is 
often not diagnosed through physical examination, 

INTRODUCTION

Trauma is the leading cause of death in the first four 
decades of life and the third most common reason for 
mortality, regardless of age.[1] The number of deaths 
caused by trauma worldwide is estimated to be 
over 5 million annually.[2] Intra‑abdominal injuries (any 
damage to intraperitoneal and retroperitoneal 
organs) following blunt trauma  (80%) or penetrating 

Background: The initial assessment of trauma is a time‑consuming and challenging task. The purpose of this research is to examine 
the diagnostic effectiveness and usefulness of machine learning models paired with radiomics features to identify blunt traumatic 
liver injury in abdominal computed tomography (CT) images. Materials and Methods: In this study, 600 CT scan images of people 
with mild and severe liver damage due to trauma and healthy people were collected from the Kaggle dataset. The axial images were 
segmented by an experienced radiologist, and radiomics features were extracted from each region of interest. Initially, 30 machine 
learning models were implemented, and finally, three machine learning models were selected including Light Gradient‑Boosting 
Machine (LGBM), Ridge Classifier, and Extreme Gradient Boosting (XGBoost), and their performance was examined in more detail. 
Results: The two criteria of precision and specificity of LGBM and XGBoost models in diagnosing mild liver injury were calculated 
to be 100%. Only 6.00% of cases were misdiagnosed by the LGBM model. The LGBM model achieved 100% sensitivity and 99.00% 
accuracy in diagnosing severe liver injury. The area under the receiver operating characteristic curve value and precision of this 
model were also calculated to be 99.00% and 98.00%, respectively. Conclusion: The artificial intelligence models used in this study 
have great potential to improve patient care by assisting radiologists and other physicians in diagnosing and staging trauma‑related 
liver injuries. These models can help prioritize positive studies, allow more rapid evaluation, and identify more severe injuries that 
may require immediate intervention.
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patient symptoms, or laboratory tests. Therefore, rapid 
diagnosis of abdominal trauma using medical imaging is 
very important for patient care.[6,7]

The liver is the most common abdominal organ involved 
in blunt abdominal trauma due to its anterior location, 
large size, and fragile parenchyma. Early diagnosis 
and assessment of the severity of liver trauma are both 
important for triage and optimal treatment of trauma 
patients.[8‑10] Contrast‑enhanced computed tomography (CT) 
is considered the gold standard technique for evaluating 
liver trauma and monitoring its progression over time.[9,11]

Trauma evaluation can be a difficult task for even the most 
experienced radiologist. When there are multiple injuries, 
doctors may focus only on the most obvious or significant 
injury and ignore the possibility of other injuries.[12]

Machine learning is a subset of artificial intelligence that 
provides an effective way to automate the analysis and 
recognition of medical images. It has the potential to reduce 
the workload of radiologists in radiology practice. Machine 
learning is the study of computer algorithms that can learn 
complex relationships and patterns from empirical data and 
make accurate decisions.[13]

Radiomics generally aims to extract quantitative and ideally 
reproducible information from diagnostic images, including 
complex patterns that are difficult to detect or quantify with 
the human eye.[14,15]

Artificial intelligence and radiomics approaches applied 
to medical image processing for noninvasive disease 
characterization have increased dramatically in recent years.[16]

In a 2021 study by Brejnebøl et al., with the aim of investigating 
the diagnostic performance of an artificial intelligence 
algorithm for the diagnosis of pneumoperitoneum in CT 
scan images in patients with acute abdominal pain, the area 
under the receiver operating characteristic curve (AUC) was 
calculated to be 77%, and the specificity was 99%.[17]

Both early detection and severity assessment of liver 
trauma are critical for optimal triage and treatment of 
trauma patients.[18] The purpose of this study is to evaluate 
the performance of several machine learning models in 
diagnosing mild and severe liver complications caused 
by trauma in CT scan images using radiomics features, to 
improve the speed and accuracy of doctors’ performance 
and subsequently the quality of providing health services.

MATERIALS AND METHODS

This study was performed in line with the principles of 

the Declaration of Helsinki. Approval was granted by the 
Ethics Committee of Kermanshah University of Medical 
Sciences (IR.KUMS.MED.REC.1402.281).

Data
For this study, 600 axial CT slices from the Kaggle dataset[19] 
were utilized, of which 200 slices related to healthy liver, 
200 slices with mild liver damage, and the remaining 200 
slices with serious liver damage caused by blunt trauma. 
The images were DICOM, and the matrix size was 512 × 512. 
The thickness of the slices ranged from 0.5 to 5 mm.

Segmentation
The process of dividing the image into constituent parts to 
extract the desired areas is called segmentation. CT scan 
images were segmented in three‑dimensional  (3D) Slicer 
software (version 5.4.0) with the cooperation of an experienced 
radiologist. The injured area in the liver was segmented and 
separated from the image. In the case of healthy images, the 
entire parenchyma of the liver was segmented.

Extraction of features = Radiomics
This step refers to the concept of radiomics and was done 
with the radiomics toolbox in 3D Slicer software. The 
extracted features include two sets of features: first‑order 
statistical features and texture features including gray‑level 
co‑occurrence matrix, gray‑level dependence matrix, 
gray‑level run‑length matrix, gray‑level size zone matrix, 
and neighboring gray‑tone difference matrix. These 
features are obtained using Wavelet filters with different 
decompositions (all possible combinations using a high‑pass 
or low‑pass filter in all three dimensions including HHH, 
HHL, HLH, HLL, LHH, LHL, LLH, and LLL). All these 
features were saved in an Excel file.

Wavelet analysis of an image is possible using a pair of 
square mirror filters, a high‑pass filter, and a low‑pass 
filter.[20] The high‑pass filter highlights the changes in the 
gray level and therefore emphasizes the details of the image, 
whereas the low‑pass filter smoothes the image in terms 
of the gray level and removes the details of the image.[21]

The machine learning models used in this research do not 
need a feature selection algorithm separately and these 
models automatically select a number of features and based 
on the importance of that feature in decision‑making by 
the model the scores are assigned to it. The most important 
features that are involved in decision‑making by models in 
CT scan images are given in Table 1. Considering that these 
characteristics have shown their importance in the diagnosis 
of liver lesions after trauma, they can be considered suitable 
candidates for biological markers in liver damage, so it is 
suggested that in future studies, the correlation between these 
characteristics should be examined with clinical parameters.
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Training of machine learning models
To train learning models, first, the data were divided into 
two parts: training data and test data. In this study, 75% 
of the data  (slices) were used for training, and 25% of 
the data were also assigned to test the algorithms. These 
kinds of issues are supervised learning issues; they need 
labels. In supervised learning, each sample contains two 

parts: one is input observations or features and the other 
is output observations or labels.[22,23] In this study, the 
input observations are radiomics features and the output 
observations are the presence or absence of kidney injuries. 
The purpose of supervised learning is to conclude a 
functional relationship from training data that generalizes 
well to testing data.[13] As typical of supervised machine 

Table 1: The most important features selected by the models
LGBM XGBoost Ridge classifier
First order First order First order

Median  (HLH)
Mean  (HLH)
90 Percentile  (o)
Kurtosis  (o(
Mean  (HLL)
Median  (LHL)
Mean Absolute Deviation  (o)
10 Percentile  (LLH)

10 Percentile  (LLH)
Robust Mean Absolute Deviation  (LLH)
10 Percentile  (LHL)
90 Percentile  (LHL)
Root Mean Squared  (HLL)
Root Mean Squared  (LLL)
Variance  (LLL)
90 Percentile  (o)
10 Percentile  (o)
Kurtosis  (o)
10 Percentile  (LLH)

Energy  (HLL)
Total Energy  (HLL)

GLCM GLCM
Cluster Tendency  (o)
IMC1  (o)
IMC2  (HLL)‑
IMC2  (o)
Sum Entropy  (o)

IMC2  (o)
Joint Energy  (LHH)
IMC1  (HHL)
Difference Variance  (LLL)
Sum Entropy  (LLL)
Cluster Tendency  (o)
Sum Entropy  (o)
Autocorrelation  (LLL)
Inverse Variance  (LLL)

GLDM GLDM
Small Dependence Emphasis  (LHL)
Dependence Entropy  (o)
Dependence Variance  (o)
Dependence Entropy  (LLL)
Large Dependence High Gray Level 
Emphasis  (LLL)
Large Dependence Low Gray Level 
Emphasis  (LLL)
Dependence Nonuniformity Normalized  (o)

Small Dependence Emphasis  (HLL)
Dependence Entropy  (o)
Dependence Variance  (HLH)

GLRLM GLRLM
Run Entropy  (LLH)
Run Entropy  (o)
Gray Level Nonuniformity Normalized  (o)

Run Entropy  (o)
Gray Level Nonuniformity Normalized  (o)
Gray Level Nonuniformity Normalized  (LLH)
Short‑Run Emphasis  (LHH)
Short‑Run Emphasis  (LLL)

GLSZM GLSZM
Zone Entropy  (LHL)
Size Zone Nonuniformity  (HLL)
Small Area Low Gray Level Emphasis  (HLL)

Large Area Emphasis  (o)
Zone Variance  (o)
Zone Variance  (LHL)
Large Area Low Gray Level Emphasis  (HLH)
Large Area Emphasis  (LLL)
Zone Variance  (LLL)
Large Area Emphasis  (LLH)
Large Area Emphasis  (LHH)
Large Area Low Gray Level Emphasis  (LHH)
Zone Variance  (LLH)

NGTDM
Strength (O)

LGBM=Light Gradient‑Boosting Machine; XGBoost=Extreme Gradient Boosting; GLCM=Gray‑level co‑occurrence matrix; GLSZM=Gray‑level size zone matrix; NGTDM=Neighboring 
gray‑tone difference matrix; GLRLM=Gray‑level run‑length matrix; GLDM=Gray‑level dependence matrix; H= high pass; L= low pass; All possible combinations using a high pass 
or low pass filter in all three dimensions including HHH, HHL, HLH, HLL, LHH, LHL, LLH, and LLL; IMC1=Informational Measure of Correlation; O= original (without applying the 
wavelet filter)
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learning scenarios, the output variable, expertly coded by 
medical professionals, is incorporated into the Excel file 
housing the radiomics features, facilitating its provision to 
the machine learning model.

Radiomics features get saved into an Excel file. Then, during 
machine learning model training, Python calls the Excel sheets and 
processes them into the standard tables used to train classifiers:

•	 df = pd. read_excel(“CT.xlsx”)

Then, the variables x (independent variables = radiomics 
features) and y (dependent variable = output or target) are 
defined as follows:

•	 x = df. iloc[:,1:633]
•	 y = df. iloc[:,633].

Here is a brief description of each of the models:

Light Gradient‑Boosting Machine (LGBM) is a high‑speed, 
distributed, high‑performance machine learning 
framework based on a decision tree algorithm. This 
framework can be used in various tasks such as 
sorting, classification, regression, and other machine 
learning tasks. By maintaining accuracy, the speed 
of this framework increases about ten times, and the 
amount of occupied memory is about three times less. 
This framework has advantages such as high training 
efficiency, low memory occupancy, high precision, and 
support for parallelization, and it can also be implemented 
using graphics processing units to process large data.[24]

Extreme Gradient Boosting (XGBoost) is an extension based 
on Gradient Boosting Machines. Its superior performance 
has been demonstrated in many data science competitions, 
and its multicore algorithms allow multiple tasks to be 
executed simultaneously, enabling the algorithm to scale 
to large datasets.[24,25]

The Ridge Classifier is a linear classification algorithm that is 
based on the Ridge Regression Algorithm. It is used to classify 
data into two or more classes based on features. In Ridge 
Regression, the objective is to minimize the sum of squared 
errors between the predicted values and the actual values.[26]

Performance evaluation of models
In research related to disease diagnosis with different 
machine learning algorithms, the results are usually 
evaluated with different criteria of confusion matrix. In 
this study, accuracy, precision, sensitivity, specificity, F1-
score, misclassification area under the receiver operating 
characteristic curve (AUC) are measured. Table 2 shows 
how to calculate these criteria.[21,24]

In our study:
•	 True positive: Instances where the model correctly 
predicts the hepatic injury in samples that have this injury

•	 True negative: Instances where the model correctly 
predicts the absence of hepatic injury in samples that 
do not have this injury

•	 False positive: Instances where the model incorrectly 
predicts the presence of hepatic injury in samples that 
do not have this injury

•	 False negative: Instances where the model incorrectly 
predicts the absence of hepatic injury in samples that 
have this injury.

RESULTS

You can see the confusion matrix related to the 
implementation of models in CT scan images in Table 3.

According to Table  4, in terms of accuracy, the LGBM 
model has the best performance with a value equal to 
99.00% in diagnosing severe liver damage and 94.00% for 
mild liver damage. In terms of precision criteria, LGBM 
and XGBoost models with a value equal to 100% showed 
a stronger performance than the Ridge Classifier model 
in detecting mild liver damage. For severe injuries, the 
precision of these two models was calculated as 98.00% and 
96.00%, respectively. The AUC value for the LGBM model 
in diagnosing mild liver injuries was 93.80% and for severe 
injuries was 99.00%, which indicates a stronger performance 
of this model than the other two models.

Regarding the sensitivity criterion, the LGBM model has 
surpassed the other two models with values of 88.00% and 
100%, respectively, in detecting mild and severe injuries. 
LGBM and XGBoost models achieved 100% specificity in 
detecting mild liver injuries, and for severe injuries, the 

Table 2: Evaluation metrics for machine learning models 
and their formulas
Metric FORMULA
Precision

+
TP

TP FP

Accuracy +
+ + +

TP TN
TP TN FP FN

Sensitivity

+
TP

TP FN

Specificity

+
TN

TN FP

F1‑score

+ +
2

2
TP

TP FP FN

Misclassification 1 ‑ accuracy
TN=True negative; FN=False negative; FP=False positive; TP=True positive
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injuries is critical to provide appropriate monitoring and 
treatment to the patient. Early detection of injuries prevents the 
occurrence of late complications and reduces the rate of death 
due to trauma.[9] However, initial trauma assessment is a very 
time‑sensitive and challenging process. A multidisciplinary 
team performs multiple assessments and procedures 
simultaneously during the initial trauma assessment, and many 
critical decisions are made during this time. In addition to the 
cognitive bias of team members, conditions such as patients’ 
instability, incomplete relevant clinical information, mental and 
physical fatigue, and excessive workload of physicians impair 
the performance of diagnosis and create an environment that 
is prone to medical errors. In fact, more diagnostic errors occur 
in the emergency department than anywhere else.[27,28] Timely 
diagnosis of injuries and prompt initiation of appropriate care 
are required to prevent further damage in future. The main 
challenge of emergency departments when treating trauma 
patients is the timely diagnosis of life‑threatening injuries and 
initiation of appropriate treatment without delay.[29]

Artificial intelligence has attracted a lot of attention in recent 
years due to its excellent performance in image recognition 
tasks.

In this study, we proposed three machine learning models 
with the aim of timely diagnosis of liver injuries caused by 
trauma. Using these models can help doctors in the correct 
management of trauma patients and their timely treatment.

In a study conducted in 2022 with the aim of automatic 
diagnosis and quantitative assessment of liver trauma by 
Farzaneh et al., deep convolutional neural network was used 
to segment the liver. The Dice/recall/precision coefficients of 
the proposed segmentation models were 96.13/96.00/96.35% 
and 51.21/53.20/56.76%, respectively, in segmenting liver 
parenchyma and liver trauma regions.[18] In this study, deep 
learning algorithms were used for automatic liver segmentation.

The most important limitation of this study is the lack of 
access to patients’ clinical information. The use of other 
patient information such as clinical symptoms and the 
results of various clinical tests in the training of machine 
learning models can help to improve the performance 
accuracy of the models.

Table 4: The results of implementing the models
Injury Models Accuracy (%) Precision (%) AUC (%) Misclassification (%) Sensitivity (%) Specificity (%) F‑1 score (%)
Mild LGBM 94.00 100 93.80 6.00 88.00 100 93.00

XGBoost 93.00 100 92.80 7.00 86.00 100 92.00
Ridge classifier 84.00 87.00 83.90 16.00 80.00 88.00 84.00

Severe LGBM 99.00 98.00 99.00 1.00 100 98.00 99.00
XGBoost 97.00 96.00 97.00 3.00 98.00 96.00 97.00
Ridge classifier 89.00 88.00 89.00 11.00 90.00 88.00 89.00

AUC=Area under the receiver operating characteristic curve; LGBM=Light Gradient‑Boosting Machine; XGBoost=Extreme Gradient Boosting

sensitivity of these two models was 98.00% and 96.00%, 
respectively. The F1‑score, which is a combination of 
precision and recall criteria, was calculated as 93.00% and 
99.00% for the LGBM model in diagnosing mild and severe 
liver damage, respectively.

Misclassification indicates the number of samples that have 
been incorrectly classified, and in this sense, the LGBM 
model has a better performance than the other two models 
with values equal to 6.00% and 1.00%, respectively, in 
detecting mild and severe liver damage.

DISCUSSION

The use of contrast‑enhanced CT is currently the gold standard 
for the diagnosis of liver injury following trauma.[8] According 
to the CT scan results, along with the patient’s physiological 
condition, the medical team will determine the type of treatment 
and prognosis related to the complication. Early diagnosis of 

Table 3: Confusion matrix for mild and severe liver 
injury

Mild liver injury
Model Predicted negative Predicted positive
LGBM

Actual negative 51  (TN) 0  (FP)
Actual positive 6  (FN) 43  (TP)

XGBoost
Actual negative 51  (TN) 0  (FP)
Actual positive 7  (FN) 42  (TP)

Ridge classifier
Actual negative 51  (TN) 0  (FP)
Actual positive 6 (FN) 43 (TP)

Severe liver injury
Model Predicted negative Predicted positive
LGBM

Actual negative 50  (TN) 1  (FP)
Actual positive 0  (FN) 49  (TP)

XGBoost
Actual negative 49  (TN) 2  (FP)
Actual positive 1  (FN) 48  (TP)

Ridge classifier
Actual negative 45  (TN) 6  (FP)
Actual positive 5 (FN) 44 (TP)

LGBM=Light Gradient‑Boosting Machine; XGBoost=Extreme Gradient Boosting; 
TN=True negative; FN=False negative; FP=False positive; TP=True positive
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For future research on the application of artificial intelligence 
in the diagnosis of various pathologies, it is better to use all 
the clinical information of the patient in decision‑making by 
the learning model. It is better to conduct future research 
with a larger number of subjects. Instead of manual 
segmentation, automatic methods including deep learning 
can also be used for segmentation, although these methods 
also have their own limitations.

CONCLUSION

The machine learning models used in this study have 
significant potential to detect liver injuries caused by 
blunt trauma and can detect this complication in CT scan 
images with high accuracy and sensitivity. The ease of 
implementing machine learning techniques, coupled with 
the substantial value of the evaluation criteria obtained in 
this research and other studies, can convince health‑care 
developers about the potential of these techniques to create 
a system for diagnosing patients with or without emergency 
conditions in radiology departments.
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