
© 2024 Journal of Research in Medical Sciences | Published by Wolters Kluwer - Medknow | 2024 |1
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Commonly used methods for screening (diagnosing) 
PCa include prostate‑specific antigen (PSA) test, digital 
rectal examination, and transrectal ultrasound‑guided 
prostate biopsy. These methods are invasiveness or have 

INTRODUCTION

Prostate cancer (PCa) is the most common cancer in males 
and the second leading cause of death from cancer.[1] 

Background: The importance of diffusion in prostate cancer (PCa) diagnosis has been widely proven. Several studies investigated 
diffusion models in PCa diagnosis. Materials and Methods: This systematic review and meta‑analysis study was performed to evaluate 
the ability of three diffusion models to diagnose PCa from the scientific electronic databases Embase, PubMed, Scopus, and Web of 
Science (ISI) for the period up to March 2022 to identify all relevant articles. Results: Eighteen studies were included in the systematic 
review section (7 diffusion kurtosis imaging [DKI] studies, 4 diffusion tensor imaging [DTI] studies, 4 intravoxel incoherent motion 
[IVIM] studies, and 3 IVIM‑DKI studies). Pooled sensitivity, specificity, accuracy, and summary area under each diffusion model’s 
curve (AUC) and 95% confidence intervals (CIs) were calculated. The pooled accuracy and 95% CI on detection (differentiation of 
tumor from normal tissue and benign prostatic hyperplasia/prostatitis) were obtained for apparent diffusion coefficient (ADC) at 
87.97% (84.56%–91.38%) for DKI parameters (Gaussian diffusion [DK] 87.94% [78.71%–97.16%] and deviation from Gaussian diffusion 
[K] 86.84% [81.83%–91.85%]) and IVIM parameters (true molecular diffusion [DIVIM] 81.73% [72.54%–90.91%], perfusion‑related 
diffusion [D*] 65% [48.47%–81.53%] and perfusion fraction [f ] 80.36% [64.23%–96.48%]). The AUC values and 95% CI in the detection 
of PCa were obtained for ADC at 0.95 (0.92–0.97), for DKI parameters (DK 0.94 [0.89–0.99] and K 0.93 [0.90–0.96]) and for IVIM 
parameters (DIVIM 0.85 [0.80–0.91], D* 0.60 [0.43–0.77] and f 0.73 [0.63–0.84]). Two studies showed that the DTI accuracy values 
were 97.34% and 85%. For IVIM–kurtosis model in PCa detection, two studies stated that the DIVIM‑K and KIVIM‑K accuracy values 
were 85% and 84.44% (the pooled accuracy; 84.64% with 95% CI 75.78%–93.50%), and 72.50% and 71.11% (the pooled accuracy, 72.10% 
with 95% CI 64.73%–79.48%), respectively. Conclusion: Our findings showed that among the DKI, IVIM, and ADC parameters, 
it seems that ADC, Dk, DIVIM, and K are the most important, which can be used as an indicator to distinguish PCa from normal 
tissue. The DKI model probably has a higher ability to detect PCa from normal tissue than the IVIM model. DKI probably has the 
same diagnostic performance in PCa detection and grading compared to diffusion‑weighted imaging and ADC.
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low accuracy.[2‑5] Specific urinary biomarkers related to PCa 
are also reported, although confirming these biomarkers 
requires significant research.[6]

In recent years, various studies have shown the role of 
multiparametric magnetic resonance imaging (mpMRI) 
for the detection and assessment of aggressiveness 
of PCa (with high sensitivity and specificity).[4,7,8] The 
mp‑MRI is known as the combination of conventional 
anatomical (T1‑ or T2‑weighted imaging) and at least two 
functional MRI techniques: dynamic contrast‑enhanced 
MRI (DCE‑MRI), diffusion‑weighted imaging (DWI), and 
MR spectroscopy.[9,10]

DWI is a method without the use of contrast agents. Beyond 
conventional apparent diffusion coefficient (ADC) mapping, 
advanced DWI models such as intravoxel incoherent 
motion (IVIM), non‑Gaussian diffusion MRI, and diffusion 
tensor imaging (DTI) are extensively used in the detection 
or characterization of PCa.

IVIM MRI evaluates both tissue diffusivity and tissue 
microcapillary perfusion at once. IVIM parameters D, D*, and f 
represent true molecular diffusion, perfusion‑related diffusion, 
and perfusion fraction, respectively.[11] Diffusion kurtosis 
imaging (DKI) is based on non‑Gaussian water diffusion. DKI 
parameters such as D and K represent Gaussian diffusion and 
deviation from Gaussian diffusion, respectively.[12,13]

The IVIM‑kurtosis model simultaneously contains molecular 
diffusion, perfusion, and non‑Gaussian information.[14]

DTI contains quantitative information on the directional 
diffusivity of water molecules in biological tissues. DTI 
can provide the mean diffusivity (MD) or ADC of water 
in tissues, fractional anisotropy (FA) values, and diffusion 
tensor tractography.[11,15]

Therefore, different MRI imaging techniques are used 
to detect and characterize PCa, but each has one or 
more limitations.[16] It can be helpful to comprehensively 
understand which anatomic and functional MRI sequences 
are more accurate and sensitive than others in detecting and 
characterizing PCa. Ultimately, the optimal combination 
of anatomic and functional MRI sequences for detecting 
and characterizing PCa is necessary. According to our 
knowledge, no systematic review studies have been 
performed to determine the diagnostic performance of the 
three MRI diffusion models (DKI, DTI, and IVIM) and the 
IVIM‑Kurtosis model compared to ADC in detecting or 
predicting the grade of PCa.

This systematic review and meta‑analysis aimed to 
determine the accuracy of each diffusion model compared 
to ADC in diagnosing PCa.

METHODS

This systematic review and meta‑analysis were done under 
the Preferred Reporting Items for Systematic Reviews and 
Meta‑analyses (PRISMA) statement.[17]

Search strategy
We systematically searched the scientific electronic databases 
Embase, PubMed, Scopus, and Web of Science (ISI) for the 
period up to March 2022 to identify all relevant articles. 
The search strategy included the combination of the 
following keywords: (prostate OR prostatic) AND (cancer 
OR tumor OR carcinoma OR neoplasm) AND (“magnetic 
resonance imaging” OR MRI OR MR) AND (“diffusion 
tensor imaging” OR DTI OR “diffusion kurtosis imaging” 
OR DKI OR “intravoxel incoherent motion” OR IVIM) 
AND (sensitivity OR specificity OR accuracy).

The literature search was restricted to English‑language 
articles except for review articles.

Eligibility criteria and study selection
The two reviewers (individually) checked the titles and 
abstracts of the identified articles. Then, the two reviewers 
independently assessed the eligibility by reading the 
articles. The full text of the evaluated articles was considered 
with at least one diffusion model (DKI, DTI, and IVIM) to 
detect or characterize PCa.

In reviewing the full text of the articles, articles that 
mentioned sensitivity, specificity, and/or accuracy for 
diffusion models were selected. The exclusion criteria 
were: (1) the full text of the articles without the English 
language, (2) radiomic studies, and (3) studies without 
sufficient report data.

The PRISMA flow diagram of considered studies by the 
inclusion and exclusion criteria is summarized in Figure 1.

Data extraction
Data extraction was performed independently by two 
authors. The data that were extracted: study author, year 
of publication, study country, study design, reference 
standard, number of patients, number of regions, patient 
age, PSA level, Gleason score (GS) range, magnetic field 
strength, anatomic zone evaluated, b values, type of coil, 
blinding, number of readers, slice thickness, sensitivity 
value, specificity value, and accuracy value.

Quality assessment
Quality assessment of the included studies was 
performed using two independent reviewers using the 
Quality Assessment Tool for Observational Cohort and 
Cross‑Sectional Studies (NHLBI). The cross‑sectional and 
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cohort tool consists of 14 questions and the case–control 
tool contains 12 questions, each scoring 0 or 1, to determine 
the potential flaws in study methods or implementation. 
Judgments on the overall methodological quality will be 
determined by the total score for each article as follows: low 
quality (≤50% of overall score), moderate quality (50%–70% 
of overall score), and high quality (≥70% of overall score). 
A third reviewer settled any differences. (https://www.
nhlbi.nih.gov/health‑topics/study‑quality‑assessment‑
tools.).

Data synthesis and analysis (statistical analysis)
Data from the studies, including true and false‑positive 
numbers and true and false‑negative numbers, were 
collected from the eligible paper to determine sensitivity, 
specificity, accuracy, and corresponding 95% confidence 
intervals (CIs) using forest plots. In addition, to validate 
the diagnostic tests, we used the receivers’ operating 
characteristic (ROC) curves. Random‑effects restricted 
maximum likelihood was used to run the models. An 
I2 > 50% and a P < 0.05 indicated substantial heterogeneity. 
Galbraith plot was carried out to assess the sources of 
heterogeneity among studies. Subgroup analysis was 
performed using DKI (D and K) and IVIM (D, D*, f). 
Funnel plot, Egger, and Begg tests were utilized to assess 
publication bias. A nonparametric trim‑and‑fill analysis 
of publication bias was utilized to evaluate the number of 
missing studies. All data analyses were calculated using 
Stata software version 16 (StataCorp LLC 4905 Lakeway 
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Records identified from:
Databases (n = 268)

Records screened
(n = 231)

Reports assessed for
eligibility
(n = 41)

Studies included in review
(n = 18)

n = 7 DKI studies
n = 4 DTI studies
n = 4 IVIM studies
n = 3 IVIM and DKI studies

Records removed
before screening:
Conference abstract (n = 15)
Review (n = 20)
Editorial (n = 2)

Records excluded:
(n = 190)
Irrelevant articles (187)
No. open access (n = 3)

Full-text articles excluded
with reasons: (n = 23)
Duplication studies (n = 7) 
Non-English language (n = 3)
Radiomics studies (n = 1) 
No sufficient report data
(n = 12)

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta‑analyses 
2020 flow diagram for systematic reviews. DKI: Diffusion Kurtosis Imaging, 
DTI: Diffusion Tensor Imaging, IVIM: Intravoxel Incoherent Motion model

Drive College Station, Texas 77845‑4512. USA) and 
RevMan (version 5.3, The Cochrane Collaboration).

RESULTS

As mentioned before, the paper acquisition is reported in 
Figure 1. The results of the quality assessment are shown 
in Figure 2. Figures 3‑5 show forest plots of accuracy for 
each diagnostic modality. 18 of 268 studies remained for 
inclusion in our systematic review. Table 1 shows the 
study and patient characteristics of the included studies. 
Tables 2 and 3 report methodologic and MRI protocol 
characteristics and measurement of diagnostic performance 
among diffusion models of included studies, respectively.

Results of qualitative analysis
Studies on apparent diffusion coefficient
Most of the studies, along with IVIM and DKI parameters, 
reported the value of ADC in tumor tissue and normal tissue 
or benign prostatic hyperplasia (BPH)/prostatitis. Most 
studies showed a significantly lower ADC value in tumor 
tissue than in normal tissue and BPH/prostatitis, with an 
increasing tendency in high GS lesions.[14,19‑24,26]

Studies on diffusion kurtosis imaging
The number of 10 out of 18 studies involving 875 patients 
reported the diagnostic performance of DKI parameters. 
Of these, eight were on detection (differentiation of tumor 
from normal tissue and BPH/prostatitis),[14,18‑22,24,25] two on 
characterization (The meaning of the studies that have 
mentioned the accuracy of distinguishing low‑grade tumors 
from intermediate‑high grade tumors),[23,26] and two on 
both.[21,24]

In all selected studies, the K and D values were useful for 
discriminating both PCa from normal tissue/BPH/prostatitis 
and low from high GS tumors. Studies have reported that the 
K and D values were significantly higher and lower in the 

Figure 2: The result of quality assessment. One score was given to the 
question with a Yes answer, a zero score to answer No, and a no score to other 
answer (Cannot determine, Not applicable, and Not report). In the end, the scoring 
average of all articles was received at 71.39%
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tumors than in normal tissue/BPH/prostatitis[14,19,21,22,24,25] and 
in high‑GS tumors than in low‑GS tumors,[21,23‑26] respectively.

The opinions (results) of several studies about the better 
ability of DKI over ADC were like this.

Park et al. concluded that the DKI parameters have a 
diagnostic performance comparable to mono‑exponential 
ADC in diagnosing patients with high‑ and low‑grade PCa.[26] 
Wang et al. found that the AUCs of Kapp are significantly 

lower than the AUCs ADC in the diagnosis and grading of 
PCa.[24] Tamada et al. reported that ADC and K had similar 
diagnostic performances. Also, compared to DWI, DKI 
did not have a clear added value for the clinical evaluation 
of PCa.[21] Liu et al. stated that the mono‑exponential and 
kurtosis models have the same diagnostic efficiency in 
diagnosing PCa.[14] In the end, Barrett et al. found that ADC, 
Dapp, and Kapp distinguished tumors from benign tissue, 
but none reliably discriminated between high‑grade and 
low‑grade tumors.[19]

Figure 3: The forest plot of apparent diffusion coefficient in detecting prostate cancer (differentiation of tumor from normal tissue and benign prostatic hyperplasia/
prostatitis)

Figure 4: The forest plot of diffusion kurtosis imaging parameters in detecting prostate cancer (differentiation of tumor from normal tissue and benign prostatic 
hyperplasia/prostatitis)
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For the relationship between DKI parameters and GS, the 
results mentioned by the articles are as follows. Neither 
D nor K parameters reliably separate high‑grade and 
low‑grade tumors. There is a nonsignificant negative 
correlation between the parameters of K and D with GS. 
K significantly differs between low‑ and moderate‑grade 
and moderate‑ and high‑grade tumors. Tumors with high 
grades significantly have a lower average D and higher K 
compared to low grades.

Studies on diffusion tensor imaging
The number of 4 of 18 studies involving 108 patients 
reported the diagnostic performance of DTI.[27‑30] Chen et al. 
stated that there is a significant negative correlation between 
GSs and MD values. They determined the optimum MD 
threshold of 1.0 × 10−3 mm2/ms.[27] Kozlowski et al. showed 
that DTI parameters (FA and MD) significantly differed 
between the tumor and normal tissue in the peripheral 
zone (PZ) and the whole prostate. However, only for MD, 
there was a significant difference between the tumor and 
normal tissue in the transition zone (TZ). The AUCs FA in 
the whole prostate was significantly lower than the AUCs 
MD. However, there were no significant differences between 
the AUC values in PZ.[28]

In another study, Kozlowski et al. showed that the value 
of AUC related to MD is significantly higher than that of 
FA. On the other hand, the value of AUC related to FA 
was such that they stated that this parameter alone is not 
helpful in diagnosing the tumor and normal PZ.[29] Li et al. 

demonstrated significant differences in the ADC and FA 
values between cancerous and noncancerous tissue in PZ.[30]

It is also helpful to mention that in most of these studies, a 
comparison was made between DTI and quantitative DCE. 
Two studies stated that the AUC for DTI + DCE parameters 
was significantly higher than that for either DTI or DCE 
parameters alone.[29,30] A study showed that DTI + DCE 
and DTI parameters operate superior to DCE parameters 
alone. However, the AUC value for DTI + DCE parameters 
was not significantly different from the AUC value for DTI 
parameters alone.[28]

Studies on intravoxel incoherent motion
The number of 7 of 18 studies involving 356 patients reported 
the diagnostic performance of the IVIM parameters. Of these, 
six were on detection (differentiation of tumor from normal 
tissue and BPH/prostatitis), and one was on characterization.

Two studies on distinguishing cancerous tissue from 
normal tissue found that D was significantly smaller in 
PCa than in normal tissue.[33,34] Valerio et al. stated that D* 
was significantly higher in PCa than in normal tissue.[34] 
However, Lee et al. stated that D* and f parameters values 
were insignificant between these two tissues.[33] Liu et al., 
regarding the diagnosis of PCa from BHP, stated that D 
and f are significantly lower in PCa compared to BHP.[14] 
However, Bao et al. concluded that D is significantly lower 
in PCa than BHP, but f and D* were not significantly 
different.[31]

Figure 5: The forest plot of intravoxel incoherent motion parameters in detecting prostate cancer (differentiation of tumor from normal tissue and benign prostatic 
hyperplasia/prostatitis)
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For the relationship between IVIM parameters and GS, three 
studies reported a significant negative correlation between 
GS and D.[31,32,34] In addition, one of the studies reported a 
significant positive correlation between GS and D*.[34] Lee 
et al. found that between D, D*, and f parameters, only D* 
has a positive significant difference with GS.[33] Whereas Liu 
et al. found a nonsignificant negative correlation between 
GS and D, D* and f parameters.[14]

The opinions (results) of several studies about the superiority 
of IVIM over ADC were like this. Liu et al. concluded that 
the mono‑exponential model (MEM), IVIM, and kurtosis 
were helpful in the diagnosis of PCa, and the diagnostic 
efficacy seemed to be similar.[14] Bao et al.’s study concluded 
that the diagnosis efficiency of IVIM parameters was not 
superior to ADC in diagnosing PCa in the TZ.[31] Lee et al. 
reported that the ADC parameter had the highest accuracy 
in differentiating PCa from normal tissue compared to IVIM 
parameters.[33] Barbieri et al. concluded that classification 
by IVIM parameters was not superior to that by ADC.[32]

Studies on the intravoxel incoherent motion‑kurtosis model
Li et al. stated that the K mean value was significantly higher, 
and ADC and D mean values were significantly lower in 
PCa than in BPH/prostatitis. The mean of D and D* had 
a significant negative correlation with GS, whereas the 
mean of K and f had a significant positive correlation with 
GS. Finally, they concluded that the IVIM‑kurtosis model 
has a better ability than the MEM to distinguish PCa from 
BPH/prostatitis. Furthermore, they stated the IVIM‑kurtosis 
model might give more data in the grading of PCa compared 
with MEM.[20] Liu et al. concluded that the MEM, kurtosis, 
IVIM, and IVIM–kurtosis models probably have the same 
diagnostic efficacy for diagnosing PCa. Furthermore, the 
IVIM–kurtosis model may be superior to the MEM, kurtosis, 
and IVIM models in predicting GS of PCa.[14]

Results of meta‑analyses
From 18 studies, a meta‑analysis was performed on 16 
studies. Some studies were not subjected to meta‑analysis 
due to the lack of sufficient data.

Table 2: Magnetic resonance imaging characteristics
Author (year) Parameter b Field 

strength (t)
Type of coil Use of 

endorectal coil
Slice 

thickness
Akamine et al. (2020)[18] DKI‑IVIM 0, 50, 100, 200, 500, 

1000, 2000, 3000
3.0 Not report Not report 3.0

Barrett et al. (2018)[19] DKI 150, 450, 800, 1150, 1500 3.0 32‑channel phased‑array 
coil

No 3.6

Li et al. (2021)[20] DKI‑IVIM 0, 20, 50, 100, 200, 500, 
1000, 1500, 2000

3.0 An 8‑channel cardiac coil No 4.0

Liu et al. (2020)[14] DKI‑IVIM 0,20, 50, 100, 200, 500, 
1000, 1500, 2000

3.0 An 8‑channel cardiac coil No 4.0

Tamada et al. (2017)[21] DKI 0, 500, 1000, 1500, 2000 3.0 An external pelvic 
phased‑array coil

No 4.0

Tamura et al. (2014)[22] DKI 0, 10, 20, 30, 50, 80, 100, 
200, 400, 1000, 1500

3.0 A 16‑channel phased‑array 
coil

No 3.5

Wang et al. (2015)[23] DKI 0, 700, 1400, 2100 3.0 A pelvic phased‑array coil No 3.5

Wang et al. (2018)[24] DKI 200, 500, 1000, 1500, 
2000

3.0 A pelvic phased‑array 
coil (8‑channel)

No 3.0

Yin et al. (2021)[25] DKI 400, 800, 1200, 1600, 
2000

3.0 A 32‑channel phased‑array 
torso coil

No 5.0

Park et al. (2020)[26] DKI 0, 100, 1000, 2000 3.0 A parallel‑array body 
coil (SENSE Torso/cardiac 
coil)

No 3.0

Chen et al. (2011)[27] DTI 0, 500 1.5 ‑ Yes Blind

Kozlowski et al. (2018)[28] DTI 0, 600 3.0 Cardiac phased‐array coil Yes

Kozlowski et al. (2010)[29] DTI 0, 600 3.0 Cardiac phased‐array coil Yes

Li et al. (2014)[30] DTI 0, 700 3.0 An 8‑channel cardiac coil No Blind to the 
pathological 

result
Bao et al. (2017)[31] IVIM 0, 50, 100, 150, 200, 500, 

and 1000
3.0 A pelvic phased‑array coil No

Barbieri et al. (2017)[32] IVIM 0, 10, 20, 50, 130, 270, 
500, 900

3.0 Two phased‑array 8‑channel 
coils

No Blind

Lee et al. (2021)[33] IVIM 0, 50, 100, 200, 400, 600, 
1000, 1200, 1800, 2000

3.0 A 16‑channel 
SENSE‑XL‑TORSO coil

No

Valerio et al. (2016)[34] IVIM 0, 10, 20, 30, 40, 50, 80, 
100, 200, 400, 800

3.0 An 8‑channel torso 
phased‑array coil

Yes Blind

IVIM=Intravoxel incoherent motion; DTI=Diffusion tensor imaging; DKI=Diffusion kurtosis imaging
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Risk of bias
Publication bias was investigated using a funnel plot, Egger, 
and Begg tests. All three methods rejected publication bias. 
The results of this study based on Egger’s test show that the 
beta value is −1.4, and the probability value is equal to 0.214. 
Furthermore, based on Begg’s test, Kendal’s score is −69, 
and the probability value (P value) is 0.27, both of which 
confirm that the effect of small studies can be ignored, and 
as a result, the publication bias is rejected.

Diagnostic performance of diffusion models in prostate 
cancer detection and grading
The forest plots of accuracy from eight studies for ADC, 
eight studies for DKI, and three studies for IVIM are shown 
in Figures 3‑5. The I2 and P value range were 54.79%–80.95% 
and 0.00–0.05, respectively. An I2 > 50% and a P < 0.05 
indicated substantial heterogeneity.

The diagnostic performance results of ADC, DKI, and IVIM 
models in the PCa detection are shown in Table 3.

The pooled accuracy and 95% CI on detection (differentiation 
of tumor from normal tissue and [BPH]/prostatitis) 
were obtained for ADC at 87.97% (84.56%–91.38%), 
for DKI parameters (DK 87.94% [78.71%–97.16%], and 
K 86.84% [81.83%–91.85%]), and IVIM parameters 
(DIVIM 81.73% [72.54%–90.91%], D* 65% [48.47%–81.53%], 
and f 80.36% [64.23%–96.48%]). The AUC values and 
95% CI in the detection of PCa were obtained for ADC at 
0.95 (0.92–0.97), for DKI parameters (DK 0.94 [0.89–0.99], 
and K 0.93 [0.90–0.96]), and for IVIM parameters (DIVIM 
0.85 [0.80–0.91], D* 0.60 [0.43–0.77], and f 0.73 [0.63–0.84]). 
The pooled accuracy with corresponding 95% CIs in the 
detection PCa were 86.98% (95% CI, 82.61%–91.35%) for DKI 
and 79.37% (95% CI, 71.95%–86.79%) for IVIM. The pooled 
sensitivity and pooled specificity of ADC, DKI, and IVIM for 
PCa detection were (0.90 and 0.91), (0.91 and 0.82), and (0.77 
and 0.81), respectively. The negative predictive value and 
positive predictive value of ADC, DKI, and IVIM for PCa 
detection were (89.38% and 85.31%), (89.05% and 92.49%), 
and (81.53% and 84.19%), respectively. The summary AUC 

values in the detection PCa were 0.94 (95% CI, 0.91–0.96) 
for DKI and 0.79 (95% CI, 0.71–0.87) for IVIM. The pooled 
accuracy of ADC, DKI, and DKI + ADC for PCa grading was 
72.86% (95% CI 61.29%–84.43%), 71.41% (95% CI 67.02%–
75.81%), and 72.13% (95% CI 67.04%–77.22%), respectively.

There was no significant difference between the estimated 
accuracy results of ADC and DKI. The results show that the 
DKI model probably has a higher ability to detect PCa from 
normal tissue than the IVIM model. DKI probably has the 
same diagnostic performance in PCa detection and grading 
as ADC. Two studies showed that the DTI accuracy values 
in PCa detection were 97.34% and 85%. For IVIM‑kurtosis 
model in PCa detection, two studies stated that the 
DIVIM‑K and KIVIM‑K accuracy values were 85% and 84.44% 
(the pooled accuracy; 84.64% with 95% CI 75.78%–93.50%), 
and 72.50% and 71.11% (the pooled accuracy; 72.10% with 
95% CI 64.73%–79.48%), respectively.

DISCUSSION

In recent years, many studies have been published using 
different diffusion models for detecting and characterizing 
PCa to determine their diagnostic performance. This 
study’s goal was to reach a point of view on whether the 
parameters of three diffusion models (DKI, DTI, and IVIM) 
can compete with the ADC parameter in the detection and 
characteristic (classify, grading) of PCa. With our systematic 
review and meta‑analysis, we qualitatively and quantitatively 
expressed the ability of each parameter to detect and 
grade PCa according to the data reported in the selected 
studies. To compare the better diagnostic performance of 
ADC with the parameters of the three diffusion models, 
only the articles that mentioned the diagnostic performance 
of ADC along with the three diffusion models were used.

According to studies, 70% and 30% of PCa occur in the PZ 
and TZ, respectively. The TZ is also the site of BPH, which 
can lead to urinary obstruction. Therefore, distinguishing 
PCa from BPH is essential to avoid unnecessary biopsies. 
In addition to cancer diagnosis, determining the degree of 
malignancy is necessary to control and treat the disease.[35] 
DWI seems to detect tumors in the PZ of the prostate more 
accurately than those in the TZ. This is because PCa in the PZ 
tends to exhibit higher cellularity and restricted diffusion, 
which DWI can detect.[36] On the other hand, as mentioned, 
tumors in the TZ may be more challenging to detect using 
DWI due to the presence of BPH nodules, which can also 
show restricted diffusion and mimic cancerous lesions.

In this meta‑analysis, the pooled accuracy and 95% 
CI on detection (differentiation of tumor from normal 
tissue and [BPH]/prostatitis) were obtained for ADC 
at 87.97% (84.56%–91.38%), for DKI parameters (DK 

Table 3: Comparison of pooled measures of diagnostic 
performance among apparent diffusion coefficient, 
diffusion kurtosis imaging, and intravoxel incoherent 
motion in detecting prostate cancer (differentiation 
of tumor from normal tissue and benign prostatic 
hyperplasia/prostatitis)
Parameter Pooled 

sensitivity
Pooled 

specificity
Pooled 

accuracy
Summary 

AUC
ADC 0.90 0.91 87.97 0.95
DKI 0.91 0.82 86.98 0.94
IVIM 0.77 0.81 79.37 0.79
ADC=Apparent diffusion coefficient; DKI=Diffusion kurtosis imaging; IVIM=Intravoxel 
incoherent motion; AUC=Area under curve
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87.94% [78.71%–97.16%], and K 86.84% [81.83%–91.85%]), 
and IVIM parameters (DIVIM 81.73% [72.54%–90.91%], 
D* 65% [48.47%–81.53%], and f 80.36% [64.23%–96.48%]). 
The AUC values and 95% CI in the detection of PCa were 
obtained for ADC at 0.95 (0.92–0.97), for DKI parameters (DK 
0.94 [0.89–0.99], and K 0.93 [0.90–0.96]), and for IVIM 
parameters (DIVIM 0.85 [0.80–0.91], D* 0.60 [0.43–0.77], and 
f 0.73 [0.63–0.84]).

He et al., in a meta‑analysis study with twenty articles, 
demonstrated that the AUC values for ADC, DIVIM, D*, and 
f in the detection of PCa from noncancerous tissues were 
87%, 85%, 75%, and 76%, respectively.[37] Using the results 
of five studies, Si and Liu obtained the AUC values in the 
detection of PCa 0.93 (95% CI, 0.90–0.95) for ADC, 0.89 (95% 
CI, 0.86–0.92) for DK, and 0.93 (95% CI, 0.90–0.95) for K.[38] 
According to the selected articles in this study, it can be 
definitely stated that the values of ADC, DK, and DIVIM are 
significantly higher, and the value of K is significantly 
lower in PCa compared to BPH and normal tissue. In their 
systematic and meta‑analysis article, Brancato et al. stated 
that DK, K, and DIVIM parameters are probably helpful in 
PCa diagnosis, but f and D* parameters have no effective 
usefulness.[39] Therefore, according to the studies, among 
parameters of the DKI, IVIM, and ADC, it seems that ADC, 
Dk, DIVIM, and K are the most important, which can be used 
as an indicator to distinguish PCa from normal tissue.

In this study, for DKI and IVIM, the AUC values in the 
detection of PCa were accessed at 0.94 and 0.79, respectively. 
The sensitivity and specificity of DK and K for PCa grading 
were the same 96% (95% CI 89%–98%) and 83% (95% CI 
77%–87%), respectively. In a meta‑analysis study using 
19 articles, the AUC value obtained for DWI in the PCa 
detection was equal to 0.85.[40] Another study using 21 
articles mentioned a value of 0.9.[41] In a meta‑analysis 
study aimed at investigating the diagnostic performance 
of DKI parameters in breast cancer grading, sensitivity 
and specificity values were obtained for K (90% and 88%), 
D (86% and 88%), and ADC (85% and 83%).[42] Wang et al., 
in a review study, assessed the diagnostic performance of 
ADC, DKI, and IVIM parameters for differentiating benign 
and malignant nonfatty musculoskeletal soft‑tissue tumors. 
Thirteen ADC studies showed the AUC value for ADC was 
0.806. Four IVIM studies calculated the AUC values for DIVIM 
0.874, D* 0.736, and f 0.573. Two DKI studies stated the AUC 
value of K at 0.97 and 0.89.[43]

In general, the DKI model probably has a higher ability to 
detect PCa from normal tissue than the IVIM model and the 
same diagnostic performance compared to DWI and ADC.

The reasons for this superiority or the same diagnostic 
performance should be found in the DKI model features 

compared with other models. The DWI measures 
the microscopic movement of water molecules in the 
extracellular space. Due to more water restriction, the 
amount of ADC decreases in tumor tissue. The diffusion 
of water around the cancerous lesion is restricted due 
to the density of the tumor tissue, and ADC cannot 
fully record diffusion inhomogeneity within the tumor 
voxel.[44] However, the kurtosis model can show this 
variation. In fact, in the DKI method, it is assumed that the 
movement of water has a non‑Gaussian distribution due 
to the complex structure and heterogeneity of tissues.[45] 
The IVIM model considers both diffusion components, 
assuming a Gaussian distribution and perfusion, providing 
quantitative information about the microstructure and 
microvasculature.[46,47]

Two limitations may affect the reliability of our findings. 
Data may be missing because we only included studies 
written in English. Another limitation is that several articles 
whose title was about one of the types of diffusion were not 
entirely free and did not have enough information in the 
abstract were excluded from our study. There is insufficient 
certainty that they were eligible for inclusion in our study.

CONCLUSION

According to the studies, among the DKI, IVIM, and 
ADC parameters, it seems that ADC, Dk, DIVIM, and K are 
the most important, which can be used as an indicator to 
distinguish PCa from normal tissue. In general, the DKI 
model probably has a higher ability to detect PCa from 
normal tissue than the IVIM model. DKI probably has the 
same diagnostic performance in PCa detection and grading 
compared to DWI and ADC, so it is not recommended to 
be used routinely in clinical evaluation and, therefore, 
multiparametric techniques.
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