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information on functional connectivity (FC) alterations in 
the brain by measuring blood‑oxygen‑level‑dependent 
signals. FC studies can identify biomarkers for ASD 
diagnoses by examining correlations between different 
regions of the brain.[3,4] Early ASD diagnosis and 
intervention planning can lead to fewer problematic 
behaviors and a better quality of life for patients.[5,6] As 
a result, selecting the appropriate FC model is essential 
for effectively diagnosing ASD.

Group‑level FC analyses are usually performed based on 
graph theory in the form of nodes and edges in which 
the brain regions and the correlation between them are 
represented by nodes and edges, respectively.[7‑9] In 
these methods, the correlations across the brain areas are 

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental 
disease that begins in early childhood and lasts into 
adulthood. The total prevalence of ASD was 16.8/1000 
children aged 8 years in 2014, and the rate has risen 
rapidly in recent decades. Estimates of ASD prevalence 
differed by gender, with males being four times more 
likely than females to be diagnosed with the disorder.[1] 
ASD is frequently characterized by a number of mental 
development disorders, including impaired cognitive, 
intellectual, social interaction, and language abilities.[2]

Resting‑state functional magnetic resonance 
imaging (rs‑fMRI) is a noninvasive tool that can provide 

Background: Autism spectrum disorder is a neurodevelopmental condition in which impaired connectivity of the brain network. 
The functional magnetic resonance imaging (fMRI) technique can provide information on the early diagnosis of autism by evaluating 
communication patterns in the brain. The present study aimed to assess functional connectivity (FC) variations in autism patients. 
Materials and Methods: Resting‑state fMRI data were obtained from the “ABIDE” website. These data include 294 autism patients 
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were significantly different between the two groups. The middle temporal gyrus had more communication than the other regions. 
The largest difference between groups was – 0.112, which corresponding to the right middle temporal and right thalamus regions. 
Conclusion: The findings of this study revealed functional relationship alterations in patients with autism compared to healthy 
individuals, indicating the disease’s effects on the brain connectivity network.
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calculated, and then the hypothesis of equal connectivity 
structure between healthy and patient groups are assessed 
using a statistical test. However, due to a large number of 
correlation parameters, subject heterogeneity, and temporal 
autocorrelation of the data, assessing FC data is usually 
problematic. Accordingly, the advanced models based 
on the graph theory introduced by Wu et  al. and Fiecas 
et  al. were employed in this study to evaluate the brain 
connectivity network of autism patients, taking into account 
the characteristics of FC data.[10,11]

MATERIALS AND METHODS

Subjects
The data of this study were downloaded from the publicly 
available ABIDE website at http://fcon_1000.projects.nitrc.
org/indi/abide/.[12] The details of inclusion and exclusion 
criteria are explained on the ABIDE website at http://
fcon_1000.projects.nitrc.org/indi/abide/abide_I. html. This 
study was approved by the Ethics Committee of Shahid 
Beheshti University of Medical Sciences  (IR. SBMU. 
RETECH. REC.1399.820). According to the AAl atlas, the 
90 regions were extracted and considered in the analysis.[13] 
ABIDE includes structural and rs-fMRI data collected from 
17 international imaging sites. Data from ABIDE were 
preprocessed by different methods, including the usage (or 
not) of filtering and global signal correction. Structural 
preprocessing was performed using different pipelines: 
ANTS, CIVET, and FreeSurfer. The detailed scan processes 
and protocols are described on the ABIDE website at http://
preprocessed-connectomes-project.org/abide/.

Statistical analysis
Adaptive dense subgraph discovery (ADSD) and variance 
component models were used to compare the brain 
connectivity of autistic patients to the healthy group.[10,11] 
The ADSD model is determined to identify a disease‑related 
cluster of regions, and then the variance component model 
is applied to compare the pairwise connectivity of the 
selected regions.

In the ADSD model, G = (V, E, W) represents a graph that 
consists of V nodes or desired regions, E = V (V–1)/2 edges, 
and an adjacency matrix W. The adjacency matrix contains 
information about the edgewise inference findings. 
G(S) = (S, E(S)) is defined as a cluster of G with S ⊂ V, and 
E(S) = {(u, v) ∈ E | u, v ∈ S}. The following is an adaptive 
density function:

f S, =|W S |
|S|

� �� � ( ) � (1)

Where λ is used as a tuning parameter, finally, an iterative 
algorithm is used to optimize Eq. (1) and the estimation 
of λ.

The variance component model is defined as follows to 
evaluate the FC among the selected regions as pairwise:

Y = X + +� � � � (2)

The vector Y represents the correlation coefficient between 
the selected regions, obtained by the ADSD model. Let X 
be the design matrix, and β indicates the estimation of edge 
parameters. The error terms ε and ψ capture the variation 
between edges and the subject heterogeneity, respectively.

The following test statistics are employed by the permutation 
approach to compare the FC of regions between the patient 
and healthy groups:

C C C' C( - ) (var var ) ( ( - )),1 2 1 2

-1

1 2� � � � � �� � � � � � � �� � � � � � �� �'
� (3)

Where C is an identity matrix. The vectors 1
� and 2

�

represent estimates of each group’s edges parameters. In 
order to adjust the P values Eq. (3), the FDR (false discovery 
rate) is used to correct multiple comparisons. In this study, 
1000 permutations were considered for the statistical 
test. The data analysis was performed with R software 
version 4.0.5 and MATLAB R2019b.

The Mann–Whitney nonparametric test was used to 
compare age and full intelligence quotient score variables 
between the patient and healthy groups.

RESULTS

The rs‑fMRI data included 294 men with autism and 
312 healthy men. There was no significant difference in 
age (P = 0.672) and full intelligence quotient score (P = 0.663) 
distributions between the two groups [Table 1]. The first 
ADSD model was applied on 90 regions, which were 
extracted based on the AAl atlas. A cluster of 17 regions 
was detected that displayed a difference in FC between 
the patient and healthy groups. The regions of this cluster 
include the left superior frontal  (dorsolateral, orbital 
part), left middle frontal, middle frontal  (left and right 
orbital part), left anterior cingulate and paracingulate, 
hippocampus (left and right), Cuneus (left and right), right 
thalamus, middle temporal (left and right), temporal pole: 
middle temporal (left and right) and inferior temporal (left 
and right). FC alterations in some of these regions can affect 
social interaction, memory, spatial processing, language 

Table 1: Demographic information of the participants
Variable ASD group Healthy group P
Age  (years) 16.49  (7.63) 15.98  (6.31) 0.672
FIQ 108.96 (13.39) 108.84 (10.58) 0.663
Data are expressed as mean (SD). P- values were calculated by the Mann–Whitney 
U‑test. FIQ=Full intelligence quotient; SD=Standard deviation; ASD=Autism 
spectrum disorder
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acquisition, and cognitive processes. In Figure  1, the 
disease‑related cluster of regions is depicted in light blue, 
and other areas are depicted in dark blue. Figure 2 shows 
the − log (p – values) of the pairwise FC comparisons of 90 
regions between the two groups. The regions in the figure 
are ordered according to their placement in the cluster. The 
FC comparisons of the cluster’s regions had high P values, 
indicating the accurate detection of clustering by the ADSD 
model.

The FC of pairwise regions in the cluster was compared 
between the patient and healthy groups using the variance 
component model. The average correlation of all subjects 
within each of the two groups is depicted in Figure  3. 
The size and color of the circles are changed according to 
the correlation’s value. Figure 4 shows the results of the 
analysis for each region’s pair. There was a significant 

difference between the two groups on 36 edges out of 
17  (17  –  1)⁄2  =  136. The middle temporal gyrus  (MTG) 
had more communication than the other regions in the 
cluster. The largest difference between groups was – 0.112, 
which corresponding to the right middle temporal and 
right thalamus regions. Further details of the test results, 
including the estimated difference of the correlation 
between regions in the two groups and their P values, are 
presented in Table 2 (Further details on the full names of 
the regions are available in the appendix 1).

DISCUSSION

This study examined FC alterations in 294 autistic 
patients and 312 healthy individuals using the ADSD 
and the variance component model. The ADSD model 
detects a cluster of disease‑related and biologically 

Figure 1: Disease‑related regions (light blue circles) extraction by the adaptive 
dense subgraph discovery model

Figure 2: The –log (p ‑ values) of the pairwise functional connectivity comparisons 
of 90 regions between the two groups (The cluster extraction by the adaptive 
dense subgraph discovery model is shown in the red box)

Figure 3: The average correlation of all subjects within each of the two groups. 
ASD: Autism spectrum disorder

Figure 4: The results of the functional connectivity analysis for each regions pair 
between the two groups using the variance component model. FC: Functional 
connectivity
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interpretable regions by minimizing false positive 
and false negative noises. According to the result of 
this model, a disease‑related cluster of 17 regions was 
identified, such as the hippocampus, cuneus, and inferior 
temporal. Connectivity alterations in these regions can 
affect social interaction, memory, spatial processing, 
and language acquisition.[14‑16] In this regard, Chen et  al. 
used advanced statistical methods to study the brain 
connectivity subnetworks in autism patients. Common 
areas in the subnetworks with the ADSD model included 
the middle frontal (left orbital part), anterior cingulate and 
paracingulate  (left), and temporal pole: middle temporal 
and right inferior temporal.[17] Another study in patients 

with autism reported connectivity changes in the right 
thalamus, middle temporal, and right inferior temporal.[18] 
According to Pascual‑Belda et al., FC changes influence the 
temporal and frontal lobe, as well as the limbic system.[19]

The variance component model is used to compare the 
FC of regions pairwise in the cluster between two groups 
by considering the main features of FC data, including 
temporal autocorrelation and subject heterogeneity. In this 
model, the connectivity of 36 region pairs was significantly 
different between the patient and healthy groups. 
Compared to other regions, the MTG displayed more 
communication. The largest difference between groups is 
also related to the right middle temporal region and the 
right thalamus. The MTG region is involved in language 
and semantic memory processing, which can be related to 
the behaviors of people with ASD.[20] Xu et al. presented that 
altered MTG subregions in children and adults with ASD 
were linked to social cognition and language.[21] Another 
study on brain connectivity in people with ASD showed 
that the parahippocampus and thalamus can be diagnostic 
biomarkers for autism.[22]

The connectivity of the left anterior cingulate and 
paracingulate  (ACG. L) with the left middle frontal and 
left middle frontal (orbital part) regions was significantly 
different between the two groups. The connectivity altered 
of ACG. L, as regions of the default mode network (DMN), 
can affect cognitive processes. In this regard, Kennedy 
and Courchesne showed decreased activity of the anterior 
cingulate cortex in patients with ASD.[23] In people with 
ASD, increased connectivity in the brain regions of 
the DMN may be associated with social impairment 
symptoms.[24] In addition, various investigations have 
identified connectivity alternations of DMN regions in 
patients with ASD.[25‑28]

CONCLUSION

To accurately estimate the FC structure associated with 
phenotypes of neurological diseases, it is critical to use 
appropriate statistical models. In this study, advanced 
graph‑based models were employed to investigate changes 
in communication patterns across different brain regions in 
autistic patients. The results showed functional relationship 
alterations in patients with autism compared to healthy 
individuals, indicating the disease’s effects on the brain 
connectivity network.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Table 2: Differentially expressed edges between the two 
groups by the variance component model
Index Different expressed edges Pa Estimated differenceb

1 SFGdor.L  MTG.L 0.019 0.065
2 SFGdor.L  MTG.R 0.009 0.068
3 ORBsup.L  CUN.L 0.049 −0.048
4 ORBsup.L  MTG.L 0.009 0.076
5 ORBsup.L  MTG.R 0.009 0.073
6 ORBsup.L  ITG.L 0.019 0.063
7 MFG.L  ACG.L 0.027 −0.054
8 MFG.L  MTG.R 0.014 0.065
9 MFG.L  ITG.L 0.019 0.060
10 ORBmid.L  ACG.L 0.019 −0.061
11 ORBmid.L  CUN.L 0.036 −0.051
12 ORBmid.L  CUN.R 0.030 −0.048
13 ORBmid.L  MTG.L 0.009 0.080
14 ORBmid.L  MTG.R 0.018 0.058
15 ORBmid.L  ITG.L 0.009 0.079
16 ORBmid.R  MTG.L 0.014 0.067
17 HIP.L  MTG.L 0.009 −0.094
18 HIP.L  TPOmid.L 0.019 −0.056
19 HIP.L  ITG.L 0.009 −0.082
20 HIP.L  ITG.R 0.014 −0.060
21 HIP.R  MTG.L 0.009 −0.078
22 HIP.R  MTG.R 0.014 −0.087
23 HIP.R  TPOmid.L 0.018 −0.062
24 HIP.R  TPOmid.R 0.009 −0.062
25 HIP.R  ITG.L 0.009 −0.089
26 HIP.R  ITG.R 0.009 −0.085
27 CUN.L  MTG.L 0.018 0.063
28 CUN.L  MTG.R 0.014 0.055
29 CUN.L  TPOmid.L 0.027 0.051
30 CUN.L  ITG.R 0.032 0.058
31 CUN.R  MTG.L 0.019 0.061
32 CUN.R  TPOmid.L 0.038 0.051
33 CUN.R  TPOmid.R 0.032 0.050
34 THA.R  MTG.L 0.009 −0.095
35 THA.R  MTG.R 0.009 −0.112
36 THA.R  ITG.R 0.009 −0.061
aP‑values were calculated by the variance component model, bEstimated difference 
of the correlation between regions in patient and healthy individuals. Further details 
on the full names of the regions are available in the appendix. Parameter estimation 
of the edges between regions in the patient and healthy group

D
ow

nloaded from
 http://journals.lw

w
.com

/jrm
s by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
2+

Y
a6H

515kE
=

 on 02/04/2024



Pourmotahari, et al.: Connectivity network of autism disorder

Journal of Research in Medical Sciences | 2024 |5

REFERENCES

1.	 Maenner MJ, Shaw KA, Baio  J, Washington A, Patrick M, et al. 
Prevalence of autism spectrum disorder among children aged 
8  years  – Autism and developmental disabilities monitoring 
network, 11 sites, United States, 2016. MMWR Surveill Summ 
2020;69:1‑12.

2.	 Chaste P, Leboyer M. Autism risk factors: Genes, environment, 
and gene‑environment interactions. Dialogues Clin Neurosci 
2012;14:281‑92.

3.	 Chen L, Chen Y, Zheng H, Zhang B, Wang F, Fang J, et al. Changes 
in the topological organization of the default mode network in 
autism spectrum disorder. Brain Imaging Behav 2021;15:1058‑67.

4.	 Greicius  M. Resting‑state functional connectivity in 
neuropsychiatric disorders. Curr Opin Neurol 2008;21:424‑30.

5.	 Moore V, Goodson S. How well does early diagnosis of autism 
stand the test of time? Follow‑up study of children assessed for 
autism at age 2 and development of an early diagnostic service. 
Autism 2003;7:47‑63.

6.	 Fernell  E, Eriksson  MA, Gillberg  C. Early diagnosis of autism 
and impact on prognosis: A  narrative review. Clin Epidemiol 
2013;5:33‑43.

7.	 Lehmann  BC, Henson  RN, Geerligs  L, Cam‑Can, White  SR. 
Characterising group‑level brain connectivity: A  framework 
using Bayesian exponential random graph models. Neuroimage 
2021;225:117480.

8.	 Simpson SL, Moussa MN, Laurienti PJ. An exponential random 
graph modeling approach to creating group‑based representative 
whole‑brain connectivity networks. Neuroimage 2012;60:1117‑26.

9.	 Zalesky A, Fornito A, Bullmore  ET. Network‑based statistic: 
Identifying differences in brain networks. Neuroimage 
2010;53:1197‑207.

10.	 Wu  Q, Huang  X, Culbreth AJ, Waltz  JA, Hong  LE, Chen  S. 
Extracting brain disease‑related connectome subgraphs by 
adaptive dense subgraph discovery. Biometrics 2022;78:1566‑78.

11.	 Fiecas  M, Cribben  I, Bahktiari  R, Cummine  J. A  variance 
components model for statistical inference on functional 
connectivity networks. Neuroimage 2017;149:256‑66.

12.	 Craddock C, Benhajali Y, Chu C, Chouinard F, Evans A, Jakab A, 
et  al. The neuro bureau preprocessing initiative: Open sharing 
of preprocessed neuroimaging data and derivatives. Front 
Neuroinform 2013.

13.	 Tzourio‑Mazoyer N, Landeau B, Papathanassiou D, Crivello F, 
Etard  O, Delcroix  N, et  al. Automated anatomical labeling of 
activations in SPM using a macroscopic anatomical parcellation 
of the MNI MRI single‑subject brain. Neuroimage 2002;15:273‑89.

14.	 Banker  SM, Gu  X, Schiller  D, Foss‑Feig  JH. Hippocampal 

contributions to social and cognitive deficits in autism spectrum 
disorder. Trends Neurosci 2021;44:793‑807.

15.	 Rolls ET, Zhou Y, Cheng W, Gilson M, Deco G, Feng J. Effective 
connectivity in autism. Autism Res 2020;13:32‑44.

16.	 Cai J, Hu X, Guo K, Yang P, Situ M, Huang Y. Increased left inferior 
temporal gyrus was found in both low function autism and high 
function autism. Front Psychiatry 2018;9:542.

17.	 Chen  S, Xing  Y, Kang  J. Latent and abnormal functional 
connectivity circuits in autism spectrum disorder. Front Neurosci 
2017;11:125.

18.	 Chen  S, Kang  J, Xing  Y, Wang  G. A  parsimonious statistical 
method to detect groupwise differentially expressed 
functional connectivity networks.  Hum Brain Mapp 
2015;36:5196‑206.

19.	 Pascual‑Belda A, Díaz‑Parra A, Moratal D. Evaluating functional 
connectivity alterations in autism spectrum disorder using 
network‑based statistics. Diagnostics (Basel) 2018;8:51.

20.	 Onitsuka  T, Shenton  ME, Salisbury  DF, Dickey  CC, Kasai  K, 
Toner SK, et al. Middle and inferior temporal gyrus gray matter 
volume abnormalities in chronic schizophrenia: An MRI study. 
Am J Psychiatry 2004;161:1603‑11.

21.	 Xu J, Wang C, Xu Z, Li T, Chen F, Chen K, et al. Specific functional 
connectivity patterns of middle temporal gyrus subregions in 
children and adults with autism spectrum disorder. Autism Res 
2020;13:410‑22.

22.	 Yang X, Zhang N, Schrader P. A study of brain networks for autism 
spectrum disorder classification using resting‑state functional 
connectivity. Mach Learn Appl 2022;8:100290.

23.	 Kennedy  DP, Courchesne  E. Functional abnormalities of the 
default network during self‑ and other‑reflection in autism. Soc 
Cogn Affect Neurosci 2008;3:177‑90.

24.	 Qin B, Wang L, Cai J, Li T, Zhang Y. Functional brain networks 
in preschool children with autism spectrum disorders. Front 
Psychiatry 2022;13:896388.

25.	 Cherkassky  VL, Kana  RK, Keller  TA, Just  MA. Functional 
connectivity in a baseline resting‑state network in autism. 
Neuroreport 2006;17:1687‑90.

26.	 Jung M, Kosaka H, Saito DN, Ishitobi M, Morita T, Inohara K, et al. 
Default mode network in young male adults with autism spectrum 
disorder: Relationship with autism spectrum traits. Mol Autism 
2014;5:35.

27.	 Murdaugh  DL, Shinkareva  SV, Deshpande  HR, Wang  J, 
Pennick  MR, Kana  RK. Differential deactivation during 
mentalizing and classification of autism based on default mode 
network connectivity. PLoS One 2012;7:e50064.

28.	 Pourmotahari  F, Doosti  H, Borumandnia  N, Tabatabaei  SM, 
Alavi Majd  H. Group‑level comparison of brain connectivity 
networks. BMC Med Res Methodol 2022;22:273.

D
ow

nloaded from
 http://journals.lw

w
.com

/jrm
s by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
2+

Y
a6H

515kE
=

 on 02/04/2024



Pourmotahari, et al.: Connectivity network of autism disorder

Journal of Research in Medical Sciences| 2024 | 6

Appendix 1: Target anatomical areas according to the automated anatomical labeling atlas
Index Regions Abbreviations Index Regions Abbreviations
1 Precentral_L PreCG.L 46 Cuneus_R CUN.R
2 Precentral_R PreCG.R 47 Lingual_L LING.L
3 Frontal_Sup_L SFGdor.L 48 Lingual_R LING.R
4 Frontal_Sup_R SFGdor.R 49 Occipital_Sup_L SOG.L
5 Frontal_Sup_Orb_L ORBsup.L 50 Occipital_Sup_R SOG.R
6 Frontal_Sup_Orb_R ORBsup.R 51 Occipital_Mid_L MOG.L
7 Frontal_Mid_L MFG.L 52 Occipital_Mid_R MOG.R
8 Frontal_Mid_R MFG.R 53 Occipital_Inf_L IOG.L
9 Frontal_Mid_Orb_L ORBmid.L 54 Occipital_Inf_R IOG.R
10 Frontal_Mid_Orb_R ORBmid.R 55 Fusiform_L FFG.L
11 Frontal_Inf_Oper_L IFGoperc.L 56 Fusiform_R FFG.R
12 Frontal_Inf_Oper_R IFGoperc.R 57 Postcentral_L PoCG.L
13 Frontal_Inf_Tri_L IFGtriang.L 58 Postcentral_R PoCG.R
14 Frontal_Inf_Tri_R IFGtriang.R 59 Parietal_Sup_L SPG.L
15 Frontal_Inf_Orb_L ORBinf.L 60 Parietal_Sup_R SPG.R
16 Frontal_Inf_Orb_R ORBinf.R 61 Parietal_Inf_L IPL.L
17 Rolandic_Oper_L ROL.L 62 Parietal_Inf_R IPL.R
18 Rolandic_Oper_R ROL.R 63 SupraMarginal_L SMG.L
19 Supp_Motor_Area_L SMA.L 64 SupraMarginal_R SMG.R
20 Supp_Motor_Area_R SMA.R 65 Angular_L ANG.L
21 Olfactory_L OLF.L 66 Angular_R ANG.R
22 Olfactory_R OLF.R 67 Precuneus_L PCUN.L
23 Frontal_Sup_Medial_L SFGmed.L 68 Precuneus_R PCUN.R
24 Frontal_Sup_Medial_R SFGmed.R 69 Paracentral_Lobule_L PCL.L
25 Frontal_Mid_Orb_L ORBsupmed.L 70 Paracentral_Lobule_R PCL.R
26 Frontal_Mid_Orb_R ORBsupmed.R 71 Caudate_L CAU.L
27 Rectus_L REC.L 72 Caudate_R CAU.R
28 Rectus_R REC.R 73 Putamen_L PUT.L
29 Insula_L INS.L 74 Putamen_R PUT.R
30 Insula_R INS.R 75 Pallidum_L PAL.L
31 Cingulum_Ant_L ACG.L 76 Pallidum_R PAL.R
32 Cingulum_Ant_R ACG.R 77 Thalamus_L THA.L
33 Cingulum_Mid_L DCG.L 78 Thalamus_R THA.R
34 Cingulum_Mid_R DCG.R 79 Heschl_L HES.L
35 Cingulum_Post_L PCG.L 80 Heschl_R HES.R
36 Cingulum_Post_R PCG.R 81 Temporal_Sup_L STG.L
37 Hippocampus_L HIP.L 82 Temporal_Sup_R STG.R
38 Hippocampus_R HIP.R 83 Temporal_Pole_Sup_L TPOsup.L
39 ParaHippocampal_L PHG.L 84 Temporal_Pole_Sup_R TPOsup.R
40 ParaHippocampal_R PHG.R 85 Temporal_Mid_L MTG.L
41 Amygdala_L AMYG.L 86 Temporal_Mid_R MTG.R
42 Amygdala_R AMYG.R 87 Temporal_Pole_Mid_L TPOmid.L
43 Calcarine_L CAL.L 88 Temporal_Pole_Mid_R TPOmid.R
44 Calcarine_R CAL.R 89 Temporal_Inf_L ITG.L
45 Cuneus_L CUN.L 90 Temporal_Inf_R ITG.R
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