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current estimates show approximately 158,000 DPH 
exposures between 2005 and 2016, with increased 
rates of attempting suicide among children, growing 
abuse among adults, and a tendency toward higher 
overdose severity.[3] The American Association of 
Poison Control Centers (AAPCC) reported a total 
number of 41,132 cases of DPH exposure in 2020, 
compared to 65,690 cases of other antihistamines 
exposure.[4] DPH poisoning can also result in 
cardiovascular and neurological complications.[5] 
Physostigmine is a general antidote for DPH toxicity 

INTRODUCTION

Diphenhydramine (DPH) is a first‑generation 
antihistamine, ie.e., available over the counter (OTC) 
and is used to treat allergy symptoms and as a 
sleeping aid.[1] Even though the therapeutic window 
of DPH is wide, it is one of the most prevalent causes 
of antihistamine overdose, often presenting with 
anticholinergic symptoms.[2] DPH exposure has 
been rising in the United States in recent years. The 
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to alleviate its symptoms, but sometimes it is unavailable 
or not used.

Medical toxicologists at poison centers review patient 
records, medical history, and identify the substance or 
product code involved during exposure calls. Once the 
information in this file becomes accessible, it is sent to the 
National Poison Data System (NPDS). Cases are recorded 
contemporaneously by poison center personnel in one of 
five electronic medical record systems. Clinical outcomes, 
specific organ effects, the relationship between these effects 
and the agent, the duration of these effects, chronicity, 
demographic data, exposure time, administration sites, 
toxicological data, and clinical findings are documented. 
Depending on the case’s specifics, most cases are “closed” 
within a few hours of initial exposure. This method was the 
same for DPH exposures and our analysis.

The application of machine learning (ML) and classification 
models for prognosis prediction has been a focus of attention 
in recent years.[6] Logistic regression (LR) and classification 
models (random forest [RF] and light gradient boosting 
machine [LGBM]) are well‑known predictive models. The 
growing implementation of the LR model in medicine is 
due to its simplicity of interpretation and low error rate.[7] 
It is also effective in predicting a binary dependent variable 
based on the values of a collection of predictor variables.[8] 
RF is an ML model developed based on a decision tree that 
randomly selects training sets from the original dataset, 
leaving the remaining dataset as the test set.[9] Finally, 
gradient boosting is an ML strategy that enhances the 
precision of classification methods, such as decision trees, 
by correcting the model’s errors at each level.[10]

Medical toxicology has taken advantage of these promising 
methods in both diagnosis/treatment and outcomes using 
gradient‑boosting models.[11] For example, LR was applied 
to predict seizures among patients with acute tramadol 
poisoning.[12] In the emergency department, ML was used 
to detect individuals prone to adverse drug reactions.[13] 
Another study demonstrated the accuracy and reliability 
of the gradient‑boosting model in predicting the 1‑year 
survival of patients with cancer and the 30‑day mortality 
of patients with sepsis.[14,15] Recently, a study on patients 
with COVID‑19 showed that the gradient‑boosting model 
predicted death with a sensitivity of 1 and intensive care 
unit admission with a specificity of 0.93.[16] A study on 
patients with myocardial infarction also revealed that 
the gradient‑boosting model predicted the risk of 1‑year 
mortality with high accuracy of 0.89 and precision of 
0.84.[17] As gradient‑boosting models enhance decision 
tree performance, they have demonstrated promising 
effects on prediction models in medicine. However, 
despite the growing use of ML in medicine, there has 

been limited application of ML in predicting outcomes 
of DPH poisoning. In this study, we sought to investigate 
the effectiveness of LR, RF, and LGBM in the outcome 
prediction of DPH poisoning using large‑scale data derived 
from the National Poison Data System (NPDS).

MATERIALS AND METHODS

Study design and setting
This study is a retrospective cohort study, for which data 
were derived from the NPDS database. NPDS is the most 
comprehensive database of poisoning in the United States, 
operated by the AAPCC that includes human substance 
exposures reported to all of the accredited poison control 
centers (PCCs) all around the country. The data were 
gathered by anonymous phone calls to PCCs and included 
follow‑up and symptoms associated with exposures 
obtained by healthcare professionals trained in poisoning 
treatment and prevention. The structure of the proposed 
method is shown in Figure 1.

Selection of participants
The data for this study were gathered and reviewed by 
expert medical toxicologists. We included all of the human 
exposures to DPH from January 01, 2017, to December 31, 
2017. Those cases with missing information, duplicated 
cases, and reported co‑ingestion were excluded. According 
to the NPDS coding users’ manual, exposure is defined 
as any exposure to a substance that has been ingested, 
inhaled, absorbed, applied to, or injected into the body, 
regardless of its toxicity or clinical manifestations.[4] 
Exposure to DPH included intentional and unintentional 
overdose of DPH and was confirmed based on clinical 
symptoms and history.

Terms definition
The predictors of the prognosis include all of the clinical 
and laboratory findings related to DPH poisoning, which 
were reviewed and defined by expert medical toxicologists. 
Medical outcomes are classified as minor, moderate, and 

Input NPDS database

Preprocessing

Normalization and Standardization

Machine Learning Algorithms

Analysis

Figure 1: Structure of the proposed method. NPDS = National Poison Data 
System
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major effects. This assessment requires follow‑up unless the 
initial call to the regional poison center occurs sufficiently 
long after the exposure that there is reasonable certainty that 
the clinical effect(s) will not worsen. Patients with symptoms 
must be monitored until they have resolved or are almost 
resolved unless the residual symptoms are expected to be 
long‑lasting and of limited clinical relevance.

Minor effect
The patient displayed a few symptoms due to the exposure, 
which are self‑limiting. The patient’s health has been 
restored to its pre‑exposure level, and there are no lasting 
disabilities or disfigurements.

Moderate effect
The patient displayed longer‑lasting, more systemic, or 
severe symptoms. Typically, treatment is indicated or would 
have been indicated. However, the patient’s symptoms were 
not life‑threatening, and he or she has fully recovered with 
no permanent disability or disfigurement.

Major effect
The patient manifested symptoms that are life‑threatening, 
resulting in a major lasting disability or disfigurement. Major 
outcomes might result in death or severe complications 
regardless of treatment.

Chronicity
Exposures were defined per NPDS guidelines and acute, 
acute on chronic and chronic.[18] Acute exposures are those 
lasting less than 8 hours, acute on chronic up to 8 hours and 
chronic exposures greater than 8 hours.  Exposures could 
be continuous, repetitive or intermittent.

Data preprocessing
When developing an ML model, data preprocessing is the 
initial step that initiates the process. Real‑world data are 
typically insufficient, inconsistent, imprecise (including 
mistakes or outliers), and lacking in specific attribute values/
trends. Data preparation is important in helping clean, 
prepare, and organize/format raw data, preparing it for the 
ML models. Some models require data in a particular format, 
for instance, the RF technique does not accept null values; 
hence, null values must be removed from the original raw 
data set to execute the algorithm. The data also need to be 
arranged in such a way that it can run and compare many 
algorithms in parallel. In this study, preprocessing involved 
removing NULL or NAN values and normalizing the data 
so that the mean is 0 and the standard deviation is 1.

Data development and evaluation
First, we categorized our data into two datasets, including 
training and test sets, which contained 70% and 30% of the 
random sample. Then, we applied three classifier prediction 

models, including LR, RF, and LGBM using the sklearn and 
TensorFlow library in Python.[19]

Statistical analysis and metrics
The study was implemented using a Jupyter notebook, 
and the Python programming language was employed for 
coding. In addition, standard evaluation metrics, including 
accuracy, precision, specificity, and sensitivity were used 
to evaluate the models’ performance.

As shown in Table 1, FN and FP represent the number of 
false‑negative and false‑negative samples. TN and TP reflect 
the number of true negative and true positive samples. 
Sensitivity (recall) estimates the proportion of stated 
positives that are accurate.

Due to a large number of datasets analyzed, the range 
of methodologies employed, and the peculiarities of the 
data set, which includes both balanced and unbalanced 
data, it is not easy to evaluate the accuracy of multiclass 
algorithms. Therefore, criteria, such as accuracy, sensitivity, 
and precision, are used to evaluate the performance of these 
algorithms. Understanding these indicators enables users 
to assess the accuracy of a classification model’s analysis 
of textual data. Conventionally, in multiclass problems, 
accuracy, recall, specificity, area under the curve (AUC), 
and precision might be reported.

RESULTS

Baseline characteristics
The baseline characteristics of our study are shown in 
Table 2. Our study population included 53761 patients with 
DPH exposure. The mean age of the patients was 22.74 ± 0.07. 
The majority of the DPH exposure was OTC use. Intentional 
exposure was the most common reason for exposure (66.0). 
The majority of the patients had minor outcomes. Most of the 
DPH exposures were acute ingestion (93.7%). Physostigmine 
was administrated in 1.1% of patients (n = 610) [Table 3].

Test and training datasets analysis
The specificity of each model was 87.0% in the test groups. 
The precision of each model was 75.0%. The recall (sensitivity) 
of models was between 73% and 75%. The F1 score was 
75.0%. The total accuracy of LGBM, LR, and RF models in 
the test dataset were 74.7%, 74.0%, and 75.0%, respectively. 
In our study, moderate effects had the highest value of 
specificity (91%–92%). However, the greatest value of recall 

Table 1: Structure of confusion matrix
Predicted 
class

Actual class
Positive Negative

Positive TP FP
Negative FN TN
TP=True positive, FP=False positive, TN=True negative, FN=False‑negative
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and F‑1 score belonged to minor effects. The characteristics 
of training and test sets of the models are shown in Table 4. 
Confusion matrices for our models are shown in Table 5.

Negative predictive value, precision‑recall, and receiver 
operating characteristic curves
The evaluation of our models showed a high accuracy level in 
precision‑recall and receiver operating characteristic (ROC) 

curves. We found that the RF model was best with 
an average precision‑recall AUC of 0.85, followed by 
LGBM (average precision‑recall AUC of 0.84). The LR 
model had the lowest performance, with an average 
precision‑recall AUC of 0.82.

In terms of the AUC of the ROC curve, LGBM and RF both 
had the highest performance (average ROC curve AUC of 
0.91), followed by LR (average ROC curve AUC of 0.90). 
Figure 2 shows the precision‑recall and ROC curves for the 
models in detail.

The negative predictive value (NPV) of the LGBM model 
was 97.1 (93.45–99.42), 87.9 (84.67–91.75), 85.8 (82.31–89.47), 
and 90.3 in major effect, minor effect, moderate effect, 
and average, respectively. The NPV of the RF model was 
96.5 (93.85–98.78), 87.7 (84.26–91.16), 86.0 (81.52–88.30), and 
90.1 (87.62–94.07) in major effect, minor effect, moderate 
effect, and average, respectively. The NPV of the LR model 
was 97.2 (94.35–99.87), 89.9 (85.64–93.46), 85.7 (81.75–90.02), 
and 90.9 (87.35–94.66) in major effect, minor effect, moderate 
effect, and average, respectively.

DISCUSSION

The primary goal of the current study was to compare three 
different ML approaches in predicting the DPH poisoning 
prognosis. Our findings demonstrated the efficacy and 
accuracy of the LR, RF, and LGBM models in DPH prognosis 
prediction. To the best of our knowledge, this is the first 
study that utilized ML approaches with the aim of prognosis 
prediction in DPH poisonings.

Prior studies in ML in medical toxicology have found 
challenges in differentiating the causal agent of poisoning 
based on clinical symptoms, primarily due to small 
sample numbers. For example, a study by Nogee et al. 
used clinical characteristics and multiclass classification 
algorithms (Naive Bayes, Support Vector Machines, 
Decision Trees, RF, and Gradient Boosted (XGBoost), to 
identify the poisoning agent. They reported an overall 
accuracy rate of 61.9%, with carbon monoxide, opioids, 
and benzodiazepines exhibiting superior performance.[20] 
Dong et al. utilized a RF model to predict opioid overdose 
and achieved a high recall (85.7%), accuracy (98.7%), and 
precision (99.2%). They then applied a deep learning 
model using the SPARCS dataset, demonstrating a high 
precision (99.2%), accuracy (96.8%), and fair recall (71.6%).[21] 
ML has also been utilized to predict paraquat poisoning 
prognosis, seizures from tramadol poisoning, adverse 
drug events in elderly patients, smoking cessation 
treatment outcomes, lead poisoning in children, pesticide 
ototoxicity, in emergency departments.[11‑12,22‑26] Using NPDS 
data, Mehrpour et al. applied a decision tree approach to 

Table 2: Baseline characteristics of the participants
n (%)

Age, mean±SD 22.74±0.07 (1–89 years)
DPH alone (OTC) 31,239 (58.1)
DPH alone (prescription) 1988 (3.7)
DPH alone (unknown if OTC or 
prescription)

20,534 (38.2)

Reason of exposure
Adverse reaction 1142 (2.1)
Intentional 35,473 (66)
Unintentional 16,445 (30.6)
Other (contamination/
tampering, malicious, 
withdrawal)

55 (0.1)

Unknown 646 (1.2)
Total 53,761 (100)

Outcome
Major 2288 (4.2)
Moderate 20,108 (37.4)
Minor 28,382 (52.8)
Unable to follow 2983 (5.5)
Total 53,761 (100)

Chronicity
Acute 50,367 (93.7)
Acute on chronic 1628 (3.0)
Chronic 832 (1.5)
Unknown 934 (1.7)
Total 53,761 (100)

Formulation
Aerosol/mist/spray/gas 142 (0.3)
Cream/lotion/gel 466 (0.9)
Liquid 10,610 (19.7)
Patch 8 (0.0)
Powder/granules 125 (0.2)
Solid (tablets/capsules/caplets) 41,190 (76.6)
Other 103 (0.2)
Unknown 1117 (2.1)
Total 53,761 (100)

DPH=Diphenhydramine, OTC=Over the counter, SD=Standard deviation

Table 3: Status of physostigmine administration in 
patients
Out come Physostigmine 

administration, count (%)
Total, 

count (%)
No Yes

Major effects 2172 (94.9) 116 (5.1) 2288 (100.0)
Minor effects 31,320 (99.9) 45 (0.1) 31,365 (100.0)
Moderate effects 19,659 (97.8) 449 (2.2) 20,108 (100.0)
Total 53,151 (98.9) 610 (1.1) 53,761 (100.0)
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acetaminophen and metformin,[27‑30] and ML classification 
techniques to predict the causal agent.[31]

Our models demonstrated a high NPV and specificity. The 
greater a test’s sensitivity, the less likely it is that a person 
with a negative test has the disease, and hence the greater 
its NPV. The higher the positive predictive value of a test, 
the less probable it is that an individual with a positive test 
is free of disease.

Interestingly, we found that just 1.1% of patients (mostly 
in those with major outcomes) received physostigmine, a 
specific antidote for DPH. In a retrospective cohort trial, 
treatment of physostigmine to reverse anticholinergic 
delirium exhibited a favorable safety profile and frequently 
improved or cleared anticholinergic delirium when given 
in dosages <2 mg.[32] 

The strengths of our study include the following: first, 
since NPDS is the largest data repository of poisoning and 
exposures to different substances in the United States, our 
results may be more generalizable. Second, the findings of 

Table 4: Characteristics of training and test sets of the machine learning models
Labels Datasets Models Major effect Minor effect Moderate effect Average
Specificity Training LGBM 0.952470 (0.89–0.984) 0.945017 (0.902–0.963) 0.988782 (0.935–0.995) 0.962090 (0.897–0.990)

RF 0.942155 (0.886–0.981) 0.883671 (0.815–0.938) 0.971873 (0.916–0.994) 0.932566 (0.874–0.978)
LR 0.902513 (0.842–0.954) 0.829750 (0.775–0.882) 0.942907 (0.893–0.976) 0.891723 (0.814–0.956)

Test LGBM 0.901235 (0.832–0.952) 0.810320 (0.765–0.874) 0.910022 (0.865–0.973) 0.873859 (0.809–0.951)
RF 0.902256 (0.835–0.97) 0.799248 (0.734–0.858) 0.924031 (0.891–0.972) 0.875178 (0.805–0.943)
LR 0.885311 (0.816–0.937) 0.800696 (0.764–0.853) 0.924315 (0.892–0.971) 0.870107 (0.799–0.926)

Precision Training LGBM 0.909631 (0.852–0.956) 0.891492 (0.846–0.935) 0.976000 (0.943–0.995) 0.925708 (0.874–0.963)
RF 0.880060 (0.836–0.924) 0.780654 (0.745–0.824) 0.942249 (0.891–0.983) 0.867654 (0.819–0.906)
LR 0.811558 (0.774–0.863) 0.686844 (0.641–0.739) 0.869870 (0.827–0.905) 0.789424 (0.754–0.82)

Test LGBM 0.808720 (0.771–0.853) 0.635983 (0.597–0.681) 0.805380 (0.758–0.851) 0.750028 (0.723–0.789)
RF 0.811366 (0.778–0.856) 0.638670 (0.589–0.675) 0.822077 (0.775–0.874) 0.757371 (0.702–0.792)
LR 0.788790 (0.742–0.831) 0.625817 (0.582–0.673) 0.821904 (0.791–0.875) 0.745503 (0.702–0.779)

Recall Training LGBM 0.952677 (0.915–0.987) 0.902059 (0.871–0.943) 0.917868 (0.867–0.965) 0.924201 (0.891–0.976)
RF 0.868343 (0.834–0.908) 0.848889 (0.803–0.888) 0.875706 (0.816–0.915) 0.864313 (0.821–0.907)
LR 0.862100 (0.824–0.903) 0.738075 (0.701–0.773) 0.752381 (0.714–0.798) 0.784185 (0.765–0.821)

Test LGBM 0.841874 (0.805–0.888) 0.666667 (0.614–0.709) 0.734488 (0.687–0.781) 0.747676 (0.697–0.791)
RF 0.831990 (0.788–0.882) 0.702854 (0.664–0.751) 0.716456 (0.684–0.752) 0.750433 (0.714–0.798)
LR 0.833476 (0.802–0.873) 0.675485 (0.641–0.709) 0.708738 (0.667–0.746) 0.739233 (0.701–0.776)

F1_score Training LGBM 0.930657 (0.908–0.956) 0.896744 (0.854–0.926) 0.896744 (0.854–0.936) 0.924481 (0.897–0.974)
RF 0.874162 (0.847–0.913) 0.813343 (0.785–0.864) 0.907760 (0.854–0.947) 0.865088 (0.823–0.906)
LR 0.836066 (0.795–0.896) 0.711538 (0.687–0.768) 0.806871 (0.774–0.845) 0.784825 (0.754–0.831)

Test LGBM 0.824964 (0.778–0.865) 0.650964 (0.614–0.692) 0.768302 (0.725–0.805) 0.748077 (0.704–0.793)
RF 0.821549 (0.778–0.863) 0.669226 (0.627–0.701) 0.765641 (0.723–0.809) 0.752139 (0.717–0.792)
LR 0.810518 (0.769–0.864) 0.649703 (0.607–0.683) 0.761137 (0.731–0.806) 0.740453 (0.716–0.792)

Accuracy Training LGBM 0.934230 (0.897–0.971) 0.894230 (0.856–0.926) 0.884230 (0.834–0.921) 0.924230 (0.888–0.967)
RF 0.874497 (0.821–0.914) 0.814497 (0.774–0.854) 0.834497 (0.794–0.871) 0.864497 (0.824–0.912)
LR 0.773508 (0.735–0.814) 0.693508 (0.652–0.739) 0.753508 (0.712–0.793) 0.783508 (0.746–0.82)

Test LGBM 0.817573 (0.774–0.859) 0.737573 (0.704–0.774) 0.737573 (0.698–0.769) 0.747573 (0.712–0.783)
RF 0.770676 (0.716–0.816) 0.760676 (0.723–802) 0.690676 (0.642–0.735) 0.750676 (0.713–0.801)
LR 0.690093 (0.645–0.734) 0.750093 (0.712–0.783) 0.730093 (0.699–0.772) 0.740093 (0.708–0.79.1)

LGBM=Light gradient boosting machine, LR=Logistic regression, RF=Random forest

Table 5: Confusion matrix for different models in 
training and test sets
Prediction Dataset Model Major 

effect
Minor 
effect

Moderate 
effect

Major 
effect

Training LGBM 1530 74 2
RF 587 87 2
LR 969 150 5

Test LGBM 575 105 3
RF 1342 265 6
LR 97 186 8

Minor 
effect

Training LGBM 123 1446 34
RF 66 573 36
LR 177 851 125

Test LGBM 108 456 120
RF 240 1133 239
LR 202 766 166

Moderate 
effect

Training LGBM 29 102 1464
RF 14 74 620
LR 48 238 869

Test LGBM 28 156 509
RF 72 376 1132
LR 58 272 803

LGBM=Light gradient boosting machine, LR=Logistic regression, RF=Random 
forest
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our study are based on the symptoms and laboratory data 
of cases reported to PCCs, allowing our results to be more 
practical and potentially useful to clinicians during their 
medical decision‑making process. The limitations of our 
study are that we included patients who had exposure only 
to DPH, so we could not identify the prognosis of patients 
with co‑ingestions. Moreover, these patients may not 
necessarily have toxicity or overdose. However, even though 
the results of ML models may help physicians diagnose, 
treat, and predict prognosis, there are few trials investigating 
the efficacy of ML models compared to decisions made by 
physicians. Finally, this study is a retrospective data analysis, 
so the results of this study should be interpreted cautiously.

CONCLUSIONS

Our study demonstrates the applicability of ML methods 
to predict the outcome of DPH exposure is feasible with 
reasonable accuracy.

Disclaimers
The NPDS is organized by the AAPCC, and it consists of 
anonymous and self‑reporting cases acquired through 
phone calls to the country’s PCCs. Because further PCC 
exposure may be under‑reported, NPDS data do not 
represent the complete exposure to a particular substance. 
As a result, NPDS data should not imply poisoning 
or overdose, and the AAPCC cannot authenticate the 
accuracy of each report. Consequently, findings based on 
NPDS data only sometimes accurately reflect the AAPCC’s 
perspective.
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Figure 2: Precision‑recall and ROC curves for the models. (a) Precision‑recall curve for LGBM, (b) ROC curve model for LGBM, (c) Precision‑recall curve for RF, (d) 
ROC curve for RF, (e) Precision‑recall curve for LR, (f) ROC curve for LR. The diagonal black dotted line represents a baseline model (that predicts at random), hence 
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