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A noninvasive method for coronary artery 
diseases diagnosis using a clinically-interpretable 
fuzzy rule-based system

Hamid Reza Marateb, Sobhan Goudarzi
Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

Background: Coronary heart diseases/coronary artery diseases (CHDs/CAD), the most common form of cardiovascular disease 
(CVD), are a major cause for death and disability in developing/developed countries. CAD risk factors could be detected by 
physicians to prevent the CAD occurrence in the near future. Invasive coronary angiography, a current diagnosis method, is 
costly and associated with morbidity and mortality in CAD patients. The aim of this study was to design a computer-based 
noninvasive CAD diagnosis system with clinically interpretable rules. Materials and Methods: In this study, the Cleveland 
CAD dataset from the University of California UCI (Irvine) was used. The interval-scale variables were discretized, with cut 
points taken from the literature. A fuzzy rule-based system was then formulated based on a neuro-fuzzy classifier (NFC) 
whose learning procedure was speeded up by the scaled conjugate gradient algorithm. Two feature selection (FS) methods, 
multiple logistic regression (MLR) and sequential FS, were used to reduce the required attributes. The performance of the 
NFC (without/with FS) was then assessed in a hold-out validation framework. Further cross-validation was performed on the 
best classifier. Results: In this dataset, 16 complete attributes along with the binary CHD diagnosis (gold standard) for 272 
subjects (68% male) were analyzed. MLR + NFC showed the best performance. Its overall sensitivity, specificity, accuracy, type 
I error (α) and statistical power were 79%, 89%, 84%, 0.1 and 79%, respectively. The selected features were “age and ST/heart 
rate slope categories,” “exercise-induced angina status,” fluoroscopy, and thallium-201 stress scintigraphy results. Conclusion: 
The proposed method showed “substantial agreement” with the gold standard. This algorithm is thus, a promising tool for 
screening CAD patients.

Key words: Classification, clinical prediction rule, coronary artery disease, data mining, fuzzy logic

Address for correspondence: Dr. Hamid Reza Marateb, Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, 
Hezar Jerib St., Isfahan 81744, Isfahan, Iran. E-mail: h.marateb@eng.ui.ac.ir
Received: 08-09-2014; Revised: 28-10-2014; Accepted: 27-01-2015

Despite the background of increasing health care 
expenses, CAD has a significant influence on global 
economics as a principal cause of disability and loss of 
efficiency.[8] CAD is a major cause of death and disability 
in developed countries. Although CAD mortality rates 
have dropped over the past four decades, CAD remains 
responsible for about one-third of all deaths in people 
over age 35.[6,7,9]

According to the World Health Organization, more 
than 60% of the global burden of the CAD occurs in 
developing countries.[10] CAD is the leading cause of 
death worldwide: 3.8 million men and 3.4 million women 
each year.[11] Overall, the prevalence of CAD in Iran 
(≥20 years old) was reported within 1.1-36.0% in different 
studies.[12] The age-adjusted (≥30 years old) prevalence of 
CAD was reported as 21.8% (22.3% in women and 18.8% 
in men) in Tehran, Iran.[13] The prevalence of CAD among 
people aged 35-79 years was reported to be 19.4% (21.9% 
in women and 16.0% in men) in an urban population in 

INTRODUCTION

Coronary heart disease also known as coronary artery 
disease (CAD) is a chronic disease in which the coronary 
arteries, responsible for transporting oxygenated blood to 
heart muscles, get narrowed and are not able to convey 
enough fresh blood to this blood-pumping organ.[1,2] 
Narrowing of blood vessels is usually due to arteriosclerosis, 
a common arterial disease in which increased areas of 
degeneration and cholesterol (CHOL) deposit plaques form 
on the inner surfaces of the arteries blocking blood flow.[3,4] 
In case of reduced blood supply, the heart does not receive 
enough oxygen and nutrition to operate properly resulting 
in angina pectoris and heart attack. The symptomatic or 
asymptomatic reduction in coronary artery flow, may occur 
with exercise or at rest, and may end up with a myocardial 
infarction, depending on the severity of obstruction and 
the speed of its development.[5,6] CAD, the most common 
form of cardiovascular disease (CVD), has the prevalence 
of 6.9% in men and 6% in women.[7]
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Isfahan, Iran.[14] Over the past decade, new scientific evidence 
strongly supporting the role of preventive interventions 
in the maintenance of health has focused much needed 
attention and efforts on cardiovascular prevention.[15] Thus, 
the prevention of CAD is a major goal and has been focused 
on many international health programs.

Coronary heart disease risk assessment could be detected 
by the physicians to predict the CAD occurrence in the 
near future to control its progress in patients.[16] One of the 
methods of CAD risk assessment is the investigation of its 
risk factors.[4,17] Hypertension, high levels of low-density 
lipoprotein cholesterol (LDL-C), low levels of high-density 
lipoprotein cholesterol (HDL-C), high total cholesterol, 
high triglycerides, diabetes mellitus, smoking, obesity, 
aging, gender, physical inactivity, age, socioeconomic and 
psychological stress, family history of CAD, and various 
genetic factors[8,18-20] are some of the CAD risk factors reported 
in the literature. A variety of meta-analysis studies have 
been performed on other CAD risk factors. For example, 
it was shown that depression,[21] job strain,[22] anxiety,[23] a 
diet poor in fruit and vegetable[24] and frequent fried-food 
consumption[25] significantly increase the risk of CAD.

Medical diagnosis is a difficult and complex task, and 
computer-aided diagnosis systems are technologies 
designed to decrease observational oversight.[26] A 
computer-aided diagnosis would be desirable for 
performing the classification and decision procedures 
since the computers can store large amount of data without 
distortion over long periods of time while performing 
complex logical and mathematical operations at very high 
speed.[27,28] Computer-based medical diagnosis systems have 
been promoted for their potential to improve the quality 
of health care, including their application to support and 
improve clinical decisions.[29,30]

Computer-aided medical diagnosis is usually performed 
via classification, also known as “supervised learning.” 
In machine learning, “classification” is the problem of 
identifying to which category (class) a new observation 
belongs, based on a training set containing observations 
(features) whose category membership is known (gold 
standard).[31] A large number of classifiers have been 
proposed in the literature. Most of them use a black-
box modeling approach without paying attention to the 
underlying mechanisms.[32] Examples of these classifiers 
are linear and quadratic discriminant analysis, support 
vector machines, k-nearest neighbors, Naïve Bayesian 
classifier. Accordingly, these classifiers cannot be clinically 
interpreted which is not desirable in clinical applications.[33] 
Rule-based classification systems such as the decision tree 
and its variants, on the other hand, can provide interpretable 
classification rules.[34,35]

The medical knowledge and the resulting diagnosis are 
pervaded by uncertainty. Fuzzy set theory on the other 
hand was conceived with the formalization of the vague 
knowledge.[36,37] It is very difficult to define sharp borders 
between various symptoms and diseases. Thus, the 
framework of the fuzzy system is very useful to deal with 
the absence of sharp boundaries of the sets of symptoms, 
diagnosis, and phenomena of diseases.[38,39] Also, fuzzy logic 
is a useful tool for building expert systems for decision-
making in the field of medical diagnosis.[40] Accordingly, 
fuzzy rule-based classification systems are now quite 
popular in the field of medical diagnosis.[41-43] These systems 
create clinically interpretable rules that take into account 
the overlap between different diagnosis classes. Therefore, 
these systems are proved to have better performance in 
comparison with that of crisp rule-based systems (such as 
decision tree).[44,45]

In this paper, a fuzzy rule-based system was designed 
to diagnose CAD based on a limited set of features 
recorded noninvasively in a case-control study. The rest 
of the paper is organized as follow: Information about the 
study population, recorded features, and the data mining 
methodology is given in the next section. Then, the results of 
the classification and the extracted rules are reported in the 
“results” section and finally, the discussion about the clinical 
validity of the proposed system and the comparison with 
other classifiers will be provided in the “discussion” section.

MATERIALS AND METHODS

Experimental methods
In this work, the CAD dataset from the University of 
California (UCI, Irvine), which is available online (https://
archive.ics.uci.edu/ml/datasets/Heart+Disease), taken 
from the Cleveland Clinic Foundation datasets, is used for 
training and testing the proposed system.[46-49] This dataset 
has been considered as a benchmark for various computer-
aided CAD diagnosis systems.[50] This database consisted 
of 303 records with 76 attributes (features).

The experimental protocol can be found elsewhere in 
details.[47,51] However, it is briefly mentioned as follows. A 
number of 303 consecutive patients referred for coronary 
angiography at the Cleveland Clinic between May 1981 and 
September 1984 participated in the experiment. No patient 
had a history or electrocardiographic evidence of prior 
myocardial infarction or known valvular or cardiomyopathic 
diseases. The following attributes were collected: Age, gender, 
resting blood pressure (trestbps), CHOL, fasting blood sugar 
(FBS), resting electrocardiographic results (restecg), active 
smoker type, number of cigarettes per day, number of years 
as a smoker, family history of CAD (famhist), chest pain 
type (cp). In addition, patients underwent 3 noninvasive 
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tests as part of a research protocol. The results of these 
tests (exercise electrocardiogram, thallium scintigraphy 
and cardiac fluoroscopy) were not interpreted until after 
the invasive gold standard test (coronary angiograms) had 
been read. The CAD status was considered when narrowing 
of at least one of the coronary arteries was more than 50%, 
shown by angiography.[52] The definition of attributes, their 
measurement scales and categories in the raw dataset were 
listed in Table 1.

Preprocessing
In our study, discretization was used on the attribute 
intervals. In machine learning, discretization refers to the 
process of converting or partitioning continuous attributes 
to discretized variables. Discretization is typically used 
as a preprocessing step for machine learning algorithms 
because it can significantly impact the performance 
of classification algorithms used for data analysis.[53,54] 
Discretization is a technique to find cut points to partition 
the range into a small number of intervals by maintaining 

good class consistency.[55-57] We used a set of cut points 
taken from the literature, indicating the diagnosis 
properties of individual attributes as below to create 
ordinal-scale variables:
1.	 “age:” “Young adult” (18-35 years old), “middle-aged 

adults” (36-55 years old), and “older adults” (older than 
55 years old);[58]

2.	 “CHOL:” “Desirable” (<200 mg/dL), “borderline high” 
(200-239 mg/dL) and “high” (≥240 mg/dL);[17]

3.	 “Trestbps:” “Low” (90-100 mmHg), “normal” 
(100-120 mmHg), “prehypertension” (120-139 mmHg), 
“stage 1 hypertension” (140-159 mmHg) and “stage 2 
hypertension” (≥60 mmHg);[59]

4.	 “Cigs:” Five categories 0, 1-9, 10-19, 20-39, and ≥40;[60]

5.	 “Thalrest:” The following categories were extracted 
(“excel’t,” “good,” “above av,” “average,” “below av” 
and “poor”) based on resting heart rate (HR) chart 
considering gender, age and resting HR;[61]

6.	 “Oldpeak” and “thalach:” The ST depression was 
divided by the maximum exercise HR (ST/HR slope), 

Table 1: The attributes of the raw Cleveland CAD dataset
Attribute Measurement scale Definition Categories*
Age Interval Age in years —
Gender Nominal Sex Male/female
Trestbps Interval Resting blood pressure (mmHg) —
CHOL Interval Serum CHOL (mg/dL) —
FBS Nominal FBS >120 (mg/dL) True/false
Restecg Nominal Resting electrocardiographic results (1) Normal; (2) having ST-T wave abnormality (T wave inversions 

and/or ST elevation or depression of >0.05 mV); (3) probable or 
definite left ventricular hypertrophy by Estes’ criteria

Thalrest Interval Resting heart rate (bpm) —
Smoke Nominal Active smoker type Yes/no
Cigs Interval Number of cigarettes per day —
years Interval Number of years as a smoker —
Famhist Nominal Family history of CAD Yes/no
Cp** Nominal Chest pain type (1) Typical angina pectoris; (2) atypical angina; (3) nonanginal 

pain; (4) no pain
Tpeakbps Interval Peak exercise systolic blood pressure 

(mmHg)
—

Tpeakbpd Interval Peak exercise diastolic blood pressure 
(mmHg)

—

Thalach Intreval Maximum exercise heart rate 
achieved (bpm)

—

Exang Nominal Exercise-induced angina Yes/no
Oldpeak Interval ST depression induced by exercise 

relative to rest
—

Slope Ordinal The slope of the peak exercise ST 
segment

(1) Upsloping; (2) flat; (3) downsloping

Ca Interval Number of major vessels (0–3) 
colored by fluoroscopy

—

Thal*** Nominal Thallium-201 stress scintigraphy (3) Normal; (6) fixed defect; (7) reversible defect
Num Nominal Diagnosis of heart disease 

(angiographic disease status)
(1) Normal: <50% diameter narrowing; (2) CAD >50% diameter 
narrowing

*The categories were shown for nominal or ordinal features; **(1) Typical angina pectoris: Pain that occurs in the anterior thorax, neck, shoulders, jaw, or arms is precipitated 
by exertion and relieved within 20 min by rest. (2) Atypical angina: Pain in one of the above locations and either not precipitated by exertion or not relieved by rest within 20 min. 
(3) Nonanginal pain: Pain not located in any of the above locations, or if so located not related to exertion, and lasting less than 10 s or longer than 30 min. (4) No pain; ***(1) 
Normal, (2) Fixed abnormality (defects observed during exercise that persisted at redistribution), and (3) Reversible abnormality (defects present during exercise and significantly 
corrected during redistribution). CAD = Coronary artery disease; CHOL = Cholesterol; FBS = Fasting blood sugar
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also known as HR adjustment of exercise-induced ST 
segment depression.[62,63] Then, the cut points of 0.01 
and 0.02 µV/beat/min were used to derive three ordinal 
classes: “low,” “medium” and “high.”

Fuzzy rule-based system
Rule generation includes both rule extraction and 
refinement. One of the methods for extracting rules from 
the input-out data is neuro-fuzzy rule generation.[64,65] It 
combines the powerful description of fuzzy classification 
techniques with the learning capabilities of Neural 
Networks. In the neuro-fuzzy classification methods, 
the feature space is partitioned into multiple fuzzy 
subspaces that are controlled by fuzzy if-then rules. For 
determining an optimum fuzzy region, the parameters 
of the fuzzy rules should be optimized.[66] The classifier 
consists of the following layers: Fuzzy membership, 
fuzzification, defuzzification, normalization and 
output.[67] The K-means clustering method was used to 
obtain the initial parameters and to formulate the fuzzy 
if-then rules.[65]

A fuzzy classification rule Ri, which describes the relation 
between the input feature space and the classes, can be 
defined as follows:

Ri: If xp1 is фil and … and xpj is фij and R and xpn is фin then 
class is outk.

where xpj is the jth feature of the pth sample, outk is the 
kth class label, and фij is the fuzzy set of the jth feature in 
the ith rule.[67,68] In the neuro-fuzzy method used in this 
study, scaled conjugate gradient (SCG) algorithm was 
used to speed up the learning procedure in which the 
parameters of the Takagi–Sugeno–Kang fuzzy inference 
system (FIS) were tuned in the training set by shortening 
the training time per iteration. This method was referred 
to as neuro-fuzzy classifier (NFC) in this manuscript. In 
this FIS, “and,” “or,” “implication” from the antecedent 
to the consequent and “aggregation” of the consequents 
across the rules operators were product, probabilistic 
or “probor” (algebraic sum), minimum and maximum. 
Weighted defuzzification was also used. Note that 
Probor (x, y) = x + y−x × y.

Feature selection
In many classification problems, a lot of candidate attributes 
are used for problem representation. Many of these are 
usually irrelevant or redundant.[69] Thus, feature selection 
(FS) is used to detect relevant features usually leading 
to an increase in classifier accuracy.[70] In this work, two 
supervised FS methodologies were used: (1) A statistical 
FS method, multiple logistic regression (MLR),[71] and (2) 
a deterministic FS approach, sequential FS (SFS).[72] MLR, 

known as feature vector machine in machine learning, can 
be used to select statistically significant features.[73] In our 
study, the intercept point was not used in the MLR. In SFS, 
the classifier starts with an empty set and added features 
until the accuracy was no longer improved by adding more 
features.

Validation
The performance of the classifier was assessed using 
the “hold-out” method, an approach to out-of-sample 
evaluation, in which the dataset was randomly split into two 
equal-size mutually exclusive sets (training and test sets). 
The classifier was trained on the training set and tested on 
the test set.[74] The performance measures of the classification 
are listed in Table 2. The following performance measures 
were used: Sensitivity (Se), Specificity (Sp), Accuracy (Acc), 
and Precision (Pr) along with other indices reported in 
Table 2. Additionally, the McNemar’s (Gillick) statistical 
test was used[75] to compare the performance of the NFC 
with different configurations (e.g., with or without FS) on 
the test set. Classification was performed using Matlab, 
Statistics Toolbox Release 2011a (The MathWorks, Inc., 
Natick, Massachusetts, USA) and the NFC toolbox.[67,76] 
All statistical analyses and calculations were performed 
using the SPSS statistical package, version 18.0 (SPSS Inc., 
Chicago, IL, USA).

RESULTS

The number of subjects analyzed was 272 (68% male) out 
of total 303 in the Cleveland CAD dataset. The excluding 
criterion was the existence of missing value in any attribute. 
The characteristics of the raw dataset in the CAD and 
normal groups are shown in Table 3.

The performance of the NFC without FS, and with SFS/
MLR on the preprocessed (discretized) Cleveland CAD 
dataset is shown in Table 4, in the hold-out validation 
framework. The feature set selected using SFS was (“thal,” 
“ST/HR slope,” “cp,” “ca,” “CHOL,” “trestbps,” “restecg,” 
“sex,” and “famhist”) from which the training accuracy 
increased from 72.1% to 88.2% during SFS procedure. 
Adding more features did not increase the accuracy. MLR, 
on the other hand, proposed the following five features 

Table 2: The reported performance measures

Recall (Rl)=Power=Se

False alarm=1-Sp=False positive rate=α (type I error)
β=1-Se=False negative rate (type II error)
TP = True positive; FN = False negative; FP = False positive; TN = True negative
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+ NFC and MLR + NFC were higher in the training and test 
sets, respectively (P < 0.05). Since no tuning was performed 
in the test set and also because of required input attributes, 
MLR + NFC was chosen as the best classifier and used for 
further analysis.

The improvement of the classification error for MLR + NFC 
on the training set is shown in Figure 1. It depicted the fast 
reduction of root mean square error via SCG in the tuning 
procedure. The algorithm stopped at the iteration no. 100 
since no significant improvement was made during the 
learning procedure.

The MLR + NFC method that had been tuned on the training 
set was tested this time on the whole dataset for overall 
accuracy assessment. The resulting confusion matrix was 
shown in Table 5. The overall accuracy of the proposed 
classifier was 84.2%. Meanwhile, Cohen’s kappa coefficient, 
a statistical measure of inter-rater agreement, was 67.75% 
(P < 0.05) showing “substantial agreement”[77] between the 
classifier’s outcome and that of coronary angiography.

The proposed fuzzy rule-based system (MLR + NFC) was 
shown in Figure 2. The system has two fuzzy rules. Each 
rule was related to an outcome diagnosis class. A diagnosis 
example was taken from the test set in the fuzzy rules to 
clarify the decision-making procedure. For a typical subject 
whose CAD was confirmed with angiography, the discretized 
attributes were as the following: Older adult age category, 
Angina was not induced by exercise, two major vessels 
colored by fluoroscopy, thallium-201 stress scintigraphy test 
showed reversible defect and ST/HR slope was high. These 
attributes were used as the input of the fuzzy system. The 
range of the output is within (0.9, 2.1) with the cut-off value of 
1.5 = (0.9 + 2.1)/2. If the output of the fuzzy system is higher or 
equal than 1.5, the subject has CAD. The output of the fuzzy 
system (based on the noninvasive tests) is 1.81, in agreement 
with that result of the gold standard (angiography). The first 
and second rules in Figure 2 have been extracted for normal 
and CAD subjects, respectively.

Table 3: The attributes of the raw Cleveland dataset for 
normal and CAD groups, along with their categories 
(percentage) for nominal/ordinal variables and 
(minimum-maximum) mean ± SD for interval variables
Attribute* Normal (n = 151) CAD (n = 121)
Gender (%) Male (54.8),  

female (45.2)
Male (84.0), female (16)

Cp (%) 1 (10.2), 2 (22.3),  
3 (42.7), 4 (24.7)

1 (4.8), 2 (6.4), 3 (13.6), 
4 (75.2)

FBS (%) False (85.4),  
true (14.6)

False (84.8), true (15.2)

Famhist (%) No (42.0),  
yes (58.0)

No (32.8), yes (67.2)

Restecg (%) 1 (56.7), 2 (0.6),  
3 (42.7)

1 (39.2), 2 (0.8), 3 (60.0)

Exang (%) No (85.4),  
yes (14.6)

No (44.8), yes (55.2)

Slope (%) 1 (64.3), 2 (30.6),  
3 (5.1)

1 (27.2), 2 (64.8), 3 (8.0)

Thal (%) 1 (79.5), 2 (3.8),  
3 (16.7)

1 (28.2), 2 (6.5), 3 (65.3)

Cigs 0-99 (15±19) 0-80 (17±20)
Age (year) (29-76) 53±9 (35-77) 56±8
Trestbps (mmHg) (94-180) 129±17 (100-200) 134±19
CHOL (mg/dL) (126-564) 244±53 (149-409) 256±48
Years (year) (0-50) 14±14 (0-54) 17±16
Thalach (bpm) (96-202) 158±19 (71-195) 139±23
Thalrest (bpm) (49-119) 77±14 (40-109) 73±13
Tpeakbps (mmHg) (84-232) 170±23 (90-230) 165±25
Tpeakbpd (mmHg) (26-120) 78±14 (50-120) 79±12
Trestbps (mmHg) (50-110) 84±10 (68-110) 86±8
Oldpeak (µV) (0-4) 0.6±0.8 (0-6) 1.6±1.3
Ca (0-3) 1±1 (0-3) 1±1
*For the definition of attributes, their units and categories, the reader is referred to 
Table 1. CAD = Coronary artery disease; CHOL = Cholesterol; FBS = Fasting blood 
sugar; SD = Standard deviation

Table 4: The performance of the proposed NFC without 
FS, with SFS/MLR in the hold-out validation framework 
on the training and test sets
Scenario Performance indices on 

the training set (%)
Performance indices on 

the test set (%)
Se Sp Pr Acc Se Sp Pr Acc

NFC 88.5 85.3 83.1 86.8 81.7 79.0 75.4 80.2
SFS+NFC 88.5 88.0 85.7 88.2 81.7 77.6 74.2 79.4
MLR+NFC 75.4 85.3 80.7 80.9 81.7 92.1 89.1 87.5
SFS = Sequential feature selection; FS = Feature selection; MLR = Multiple 
logistic regression; NFC = Neuro-fuzzy classifier; Se = Sensitivity; Sp = Specificity; 
Pr = Precision; Acc = Accuracy. Scenarios: NFC = The proposed NFC without 
FS; SFS + NFC = Sequential FS + NFC; MLR + NFC = FS via multiple logistic 
regression + NFC

(“age,” “exang,” “ca,” “thal,” and “ST/HR slope”). These 
features were statistically significant (P < 0.05) when 
running MLR in “Enter” mode excluding the intercept 
point in the model. Overall, MLR + NFC outperformed 
other classifiers in the training and test sets. It also required 
less input attributes for the decision-making procedure 
in comparison with those of other tested methods. 
McNemar’s test indicated that the performances of the SFS 

Figure 1: The improvement of the classification error for multiple logistic 
regression + neuro-fuzzy classifier on the training set versus epochs analyzed
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DISCUSSION

Primary prevention, aiming at preventing heart and blood 
vessel disease in individuals who have not had a heart 
attack or symptoms of CAD and have no known clinical 
evidence of CAD, is highly recommended in comparison 
with secondary prevention for individuals with known 
CAD. This requires changing the lifestyle by quitting 
smoking, bringing down high blood pressure, controlling 
diabetes, maintaining a healthy body weight, doing regular 
exercises, following a heart-healthy diet to lower CHOL, 
LDL, and triglycerides, and to raise HDL, reducing stress 
and Limiting alcohol consumption.[8,78]

It has been suggested to integrate the prediction, prevention 
and intervention programs of CAD for more effective primary/
secondary prevention.[17,79] Invasive coronary angiography is 
the gold standard for establishing the presence, location, and 
severity of CAD.[80,81] However, this technique is invasive, 
costly[81] and associated with a small but definite risk of 
morbidity (1.5%) and mortality (0.15%).[82,83] Therefore, a 
convenient, noninvasive alternative method for coronary 
angiography can provide significant clinical and economic 
benefits for the public health care system.[84] A number of 
noninvasive CAD diagnosis methods have been proposed in 
the literature. Among which, fluoroscopy and stress thallium 
scintigraphy, are the two most popular. Unfortunately, the 
diagnostic accuracy of these methods in comparison with 
that of the gold standard, coronary angiography, ranges 
between 35% and 75%.[85,86] Thus, the purpose of our work 
was to design a computer-aided noninvasive CAD diagnosis 
system using data mining methods to improve the diagnosis 
accuracy by combining the results of the noninvasive clinical 
tests and other attributes recorded from the subjects [Table 1].

A number of computer-aided CAD diagnosis systems have 
been proposed in the literature[47,50,87-93] whose performance 
was tested on the Cleveland CAD dataset [Table 6]. Most of 
them use the black-box mathematical methodology that is 
not acceptable in medicine where the clinical interpretation 
of the decision-making procedure is critical. Our proposed 
fuzzy rule-based system, on the other hand, provided 
interpretable linguistic terms [Figure 2], which could be 
regarded as a fuzzy version of the decision tree classifier.[94] 
For example, the comparison of rule 1 (normal) and rule 2 
(CAD) in Figure 2 shows that the higher the ST/HR slope, 
and age, the higher the risk of CAD. Also, angina induced 
by exercise increases the risk of having CAD. Also, the last 
two categories of thallium-201 stress scintigraphy test (fixed 
and reversible defects) have higher CAD risk. The above 
rules are clinically acceptable. However, number of major 
vessels colored by fluoroscopy had a medium effect on the 
CAD diagnosis that could be due to the small sample size 
of the study population. It might be related to the fact that 
the sensitivity of fluoroscopy could be as low as 35% in 
some cases,[86] and the system learned it from the training 
set. Meanwhile, the proposed system (MLR + NFC) only 
requires five input attributes for the diagnosis that is less than 

Table 5: The overall confusion matrix of the MLR + NFC 
method*
MLR + NFC outcome Patient with CAD confirmed 

with angiography
CAD positive CAD negative

Test outcome positive 95 (TP) 17 (FP)
Test outcome negative 26 (FN) 134 (TN)
*The classifier was trained on the training set and tested on the whole dataset. 
“Positive” is related to “CAD diagnosis” while “negative” was used for “normal 
diagnosis”. TP = True positive; FN = False negative; FP = False positive; 
MLR = Multiple logistic regression; NFC = Neuro-fuzzy classifier; CAD = Coronary 
artery disease; TN = True negative

Figure 2: The extracted fuzzy rules from the training set. AGE__CAT: Age category, EX__ANG: Exercise-induced angina, VES_FLU: The number of vessels colored 
by fluoroscopy, THAL_SCI: Thallium-201 stress scintigraphy category, and ST__HR__S: Heart rate adjustment of exercise-induced ST segment depression category. 
Fuzzy rules 1 and 2 were related to normal and coronary artery diseases (CAD) classes, respectively. The overall output of the fuzzy system (1.81 in this example), 
is higher or equal to 1.5 indicating that the subject had CAD that was in agreement with what obtained from the gold standard (angiography). For the description of 
the input feature categories, refer to the section “preprocessing”
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what has been proposed in the literature. Smaller number 
of required attributes facilitates the diagnosis procedure.

The overall accuracy of the proposed FIS (MLR + NFC) was 
84% [Table 5]. Since the number of normal subjects in the 
dataset was higher than CAD [Table 3], the F1-socre was also 
calculated (=82%) since it is an unbiased accuracy measure in 
unbalanced datasets. The type I error (α) and the power of the 
proposed diagnosis test were 0.1 and 76%. Reducing α down 
to 0.05 and increasing power to 80%, improves the clinical 
reliability of the proposed system that is the focus of our future 
activity. The following strategies could be taken in this regard: 
1.	 The selected mixed-type features in MLR could be 

weighted based on the clinical importance and (or) 
tuned using particle swarm optimization[95] embedded 
with Generalized Minkowski Metrics.[96] Tuning the 
feature weights, might improve the performance of the 
designed classifier; 

2.	 Although the sample size of the Cleveland dataset is not 
low, some important features such as body mass index 
(BMI) are missing. 

We are thus going to design an automated CAD risk 
assessment program, based on the findings of this study, in 
collaboration with Isfahan Healthy Heart Program[97] whose 
dataset is quite rich.

In addition to the hold-out validation method, we also 
used a 10-fold cross-validation in which the original 
sample was randomly partitioned into 10 equal-size 
subsamples. Of the 10 subsamples, a single subsample was 
retained as the validation data for testing the model, and 
the remaining 9 subsamples were used as training data. 
The cross-validation process was then repeated 10 times 
(the folds), with each of the 10 subsamples used exactly 
once as the validation data. The results from the folds were 
averaged to estimate a single estimation.[98] The overall 
cross-validation accuracy of the proposed classifier was 
83%. Guarding against testing hypotheses suggested by 
the data (type III errors[99]) was done by cross-validation. 
Comparison with other diagnosis methods designed on 
the Cleveland CAD dataset, our proposed method ranked 
in the top first quartile [Table 6].

Although the BMI was not used in our model, it is well-
known that BMI is positively correlated with CHOL.[100-102] In 
our dataset, age was positively correlated with hypertension, 
CHOL, and FBS. This might explain that age in the final model 
could capture information about CHOL, hypertension, FBS, 
and BMI as well. The number of cigarettes per day and 
number of years as a smoker were positively correlated 
with thallium-201 stress scintigraphy categories. Thus, this 
attribute could capture the smoking information. Gender 
was associated with the exercise-induced angina status. 
Thus, information about the gender could be captured by 
exercise-induced angina. This is, in fact, the property of MLR 
that takes into account the interaction between attributes 
and reports the compact attribute set. Accordingly, most of 
the input risk factors could be taken into accounts directly/
indirectly. Among the features selected, the following ones 
have been selected in another manuscript:[103] “ST/HR slope,” 
“cp,” “age,” “trestbps.”

CONCLUSION

We proposed an interpretable fuzzy rule-based system 
that could noninvasively predict the CAD based on 
“age,” “exercise-induced angina status,” number of 
major vessels colored by fluoroscopy, thallium-201 
stress scintigraphy result and ST/HR slope. The 
proposed computer-aided system was promising in 
CAD diagnosis and could be implemented as a web-
based diagnostic decision support system. However, its 
performance could be improved by introducing weights 
to the input attributes taking into account the clinical 
relevance/priority of the features.

Table 6: Comparison of the proposed system outcome 
with similar research
Author Method Accuracy (%)
Detrano et al., 1989 Probability theory 

(logistic regression)
77.00

Ster and Dobnikar, 
1996

Fisher discriminant 
analysis

84.20

Ster and Dobnikar, 
1996

LDA 84.50

Ster and Dobnikar, 
1996

Naïve Bayes 82.50-83.40

Jankowski and 
Kadirkamanathan, 
1997

IncNet 90.00

Cheung, 2001 BNNF 80.96
Cheung, 2001 C 4.5 81.11
Cheung, 2001 BNND 81.11
Cheung, 2001 Naïve Bayes 81.48
Polat et al., 2007 Fuzzy-AIRS-Knn 

based system
87.00

Kahramanli and 
Allahverdi, 2008

Hybrid neural 
network system

86.80

Resul, 2009 Neural network 
ensembles

89.01

Senthil Kumar, 2011 ANFIS 91.18
Senthil Kumar, 2012 Fuzzy resolution 

mechanism
91.83

Muthukaruppan and 
Er, 2012

PSO based fuzzy 
expert system

93.27

Mahmoodabadi and 
Saniee Abadeh, 2014

Imperialist 
competitive 
algorithm based 
fuzzy expert system

94.92

Proposed classifier MLR+NFC 84.00
ANFIS = Adaptive-network-based fuzzy inference system; MLR = Multiple logistic 
regression; NFC = Neuro-fuzzy classifier; PSO = Particle swarm optimization; 
AIRS = Artificial immune recognition system; LDA = Linear discriminant analysis
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