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and more importantly images and records, at various 
angles. The system is therefore seen as an essential tool 
in vascular surgery. However, fluoroscopy procedures 
involve unavoidable exposure to radiation. High 
exposure to radiation may result in skin damage and 
cancer risk. Given that fluoroscopy is conducted for 
the sole purpose of achieving best possible surgical 
outcomes, radiation protection may not be optimized. 
In such cases, the risk of high radiation exposure 
increases for patients and surgeons alike.[4] According 
to the International Commission on Radiological 
Protection, the fundamental principles of radiological 
protection include the justification that benefit is larger 
than damage by radiation, optimization of protection 
to apply diagnostic reference levels (DRL) and the 
application of dose limits. DRL is a dose reference level, 
which is established for frequent use and periodic test 
to recommend for diagnosis in diagnosis filming tests 
for patients.[4]

In a study of intra-operative radiation exposure in 
vascular patients, effective dose to patients was estimated 
to be 4.6-18.8 mSv in the case of endovascular aneurysm 

INTRODUCTION

The mobile image intensifier system (C-arm) is widely 
used in surgical operations, particularly in orthopedic 
surgery, because it provides real-time visualization 
and accurate guidance during the surgical process 
and because it shortens operating time. Especially, 
C-arm systems offer benefits of early recovery by 
minimizing postoperative wounds and pain.[1] This 
imaging system is also developed to perform a wide 
variety of surgical requirements, making it necessity 
for various surgeries. As the use of mobile C-arm had 
also expanded to intravascular surgery, it performs a 
substantial part of vascular dissection. It becomes a 
treatment option as important as surgical treatment 
in terms of long-term results. Among surgeons, the 
tendency of performing surgical procedures for the 
kind of patients whom they used to send to radiologists 
is also increasing as clinical doctors becomes more 
experienced with interventional procedures.[2,3] Image 
guidance is essential for interventional procedures, 
and fluoroscopy is used. Fluoroscopy is easy to operate 
and provides high temporal and spatial resolution 
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repair in which fluoroscopy time is long.[5,6] Another 
study also estimated that 29% of patients were exposed 
to radiation of 2 Gy, the threshold dose for skin injuries, 
suggesting a significant impact of radiation exposure during 
fluoroscopy.[7] In a study of radiation exposure to medical 
personnel in vascular surgery using endovascular repair, 
annual effective dose to surgeons was estimated at 0.20 
mSv (0.13-0.27 mSv). Effective dose to around their eyes 
and hands were estimated to be 0.19 mSv (0.10-0.33 mSv) 
and 0.99 mSv (0.29-1.84 mSv), respectively.[8] A study by 
Lipsitz et al. revealed that annual effective dose to vascular 
surgeons was 1.52 mSv, while effective dose was 7.77 mSv 
around eyes and 18.69 mSv in hands, revealing significantly 
higher dose levels.[9] The possible cancer risk associated with 
radiation exposure during fluoroscopic procedures cannot 
be ruled out. The European Commission on Radiological 
Protection suggested one of 1000 people is prone to solid 
cancer or leukemia during their lifetime when exposed to 
radiation of 10 mSv.[10] In the evaluation of the risk of fatal 
cancer among operation types, EAR was associated with 
risks over 1%, followed by abdominal arterial treatment 
(nearly 1%) and atherectomy (nearly 0.5%).[11] The present 
study was aimed to measure radiation dose to surgical 
members from mobile C-arm during surgery and assess 
cancer risk associated with radiation exposure.

MATERIALS AND METHODS

Study subjects
A total of 522 surgical procedures, conducted using a mobile 
C-arm from January to March of 2013, were reviewed in 
this study. To improve reliability, 148 cases were excluded 
as each type of operation was conducted <5 times during 
the period. The remaining 374 cases were analyzed. A total 
of 87 patients were eligible, regardless of gender, with an 
average age of 48.2 (0-84) years.

Study methods
The mobile C-arms used were OEC 9900 Elite (General 
Electric: GE, USA), OEC 9800 Plus (GE, USA), OEC 9800 
(GE, USA), and Ziehm Vision (Ziehm, Germany). All image 
intensifiers were of 12 inches (21 cm) in diameter. The 
distance between the X-tube and patient was about 50 cm, 
while source-to-image intensifier distance was 100 cm 
[Figure 1]. Fluoroscopy was conducted in a continuous 
mode while exposure parameters such as tube voltage, 
current, and exposure times were controlled by an auto 
exposure control (AEC). KV range was 40-120 kVP and mA 
range was 0.44-20.0 mA. Auto brightness controller was 
also used. Magnification and collimator functions were 
explored if necessary, depending on the type of surgery. 
Roadmap and digital subtraction functions were used for 
angiography and interventional procedures. Patient dose 
was measured by dose-area product (DAP) value [Figure 2], 

which is automatically measured by DAP meter (Diamentor 
PTW, Freiburg, Germany) mounted on the collimator, and 
the value is displayed on monitor. DAP represents the 
amount of radiation absorbed to air in the area of X-ray as 
described in equation 1.

DAP (Gy.m2) = Dose (Gy) × Area (m2) (1)

In general, DAP can be calculated by multiplying the X-ray 
beam cross-sectional area field by the absorbed dose in air 
(air kerma) at a point based on the assumption that the 
X-ray is equally distributed in terms of absorbed dose, 
regardless of the location, in a triangle-shaped distribution. 
In other words, when the area of X-ray beam is placed by 
a collimator, DAP is independent of the distance between 
the collimator and X-ray tube [Figure 3]. Once DAP 
values were obtained, mean, and maximum values were 
calculated. National Radiological Protection Board Report 
262 addressed conversion factors used to convert DAP 
value into effective dose.[12] In this study, effective dose was 
calculated by multiplying DAP value with a conversion 
factor, 0.20 mSv/Gy.cm2.[12-15] That is, effective dose can be 
presented as follows:

E (mSv) = DAP (Gy.cm2) × CCdap (mSv/Gy.cm2) (2)

CCdap: Effective dose conversion factor (0.2 mSv/Gy.cm2).

Based on statistical data analysis, the frequency of 
application, fluoroscopy time, DAP and effective dose were 
compared and analyzed in terms of surgical specialty and 
surgery type. ANOVA was performed to determine the 
difference between mean values using SPSS software (win 
18.0, USA, Chicago). The frequency of applications was 
analyzed for surgical specialty and operation types. The 
Chi-square test was performed to determine the association 
of effective dose with surgical specialty and operation types.

Figure 1: Structure of C-arm fluoroscopy apparatus
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RESULTS

Fluoroscopy time, dose-area product and effective dose 
by surgical specialty
Of the 374 cases, 165 were orthopedic procedures (44.1%), 
followed by 77 anesthesiology procedures (20.6%), and 43 
neurosurgical operations (11.5%). Mean fluoroscopy time 
was higher in vascular surgery recording 771.68 s, which 
was followed by 416.99 s in liver transplant and 172.50 s in 
urological procedures. Mean values of DAP and effective dose 
were higher in liver transplantation at 2.90 ± 3.76  mGy∙m2 and 
58 ± 75.2 mSv, respectively. Live transplant was followed by 
vascular surgery and urology surgery (P < 0.05). Maximum 
values of DAP and effective dose were higher for the liver 
transplant at 18.24 ± 3.76 mGy∙m2 and 364.8 ± 75.2 mSv, 
respectively, (P < 0.05). In conclusion, orthopedic surgery 
demonstrated short fluoroscopy time and low DAP and 
effective dose although it was the most frequently performed 
surgery in this study. Liver transplant and urology surgery 

exhibited long fluoroscopy time and high DAP and effective 
dose although surgical application of C-arm was low. There 
were no associations of surgical specialty with DAP and 
effective dose (P > 0.05) [Table 1].

Fluoroscopy time, dose-area product and effective dose 
by surgical type
A total of 26 different surgical procedures were 
performed in this study. Of those, 77 cases were facet 
nerve injection (20.6%), followed by 36 (intra-operative 
mesenteric portography) (9.6%), 33 kyphoplasty (8.8%), 
23 percutaneous nephrolithotomy (6.1%) and 19 open 
reduction and internal fixation — Leg (5.1%). The surgery 
type performed over 30 times accounted for 39.0% of 
total surgeries, followed by the type with below 10 times 
(28.3%), the type with 10-19 times (26.5%) and the type 
with 20-29 times (6.1%). Mean fluoroscopy time of all 
surgeries was 229.96 s. Lower extremity angiography had 
the highest fluoroscopy time with 771.68 s, followed by 
intra-operative mesenteric portography with 416.99 s, 
percutaneous nephrolithotomy with 259.03 s, proximal 
femoral nail antirotation with 249.07 s, and femoral nail 
surgery with 219.21 s. Top five operation types in terms of 
fluoroscopy time accounted for 56.6% of total surgeries, 
where only a few operations explored long fluoroscopy 
time while most surgeries required short fluoroscopy time. 
Among orthopedic surgeries, the highest DAP value and 
effective dose were found in posterior lumbar fusion with 
P 1.20 ± 0.82 mGy∙m2 and 24.2 ± 16.40 mSv, respectively. 
Proximal femur nail antirotation and nail-femur followed 
with second and third (P < 0.05) highest. Maximum values 
of DAP and effective dose were higher in proximal femur 
nail antirotation at 2.92 ± 3.76 mGy∙m2 and 58.4 ± 75.2 mSv, 
respectively, (P < 0.05). In neurosurgery, the highest DAP 
value and effective dose were found in kyphoplasty at 
P1.94 ± 0.70 mGy∙m2 and 38.80 ± 14.01 mSv, respectively. 
Posterior lumbar fusion and nerve root block followed 
as second and third (P < 0.05). Maximum values of DAP 
and effective dose were higher in posterior lumbar fusion 

Figure 2: Acquisition of fluoroscopy times and dose-area product

Figure 3: Illustration of the dose-area product principle
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at 3.63 ± 3.76 mGy∙m2 and 72.60 ± 75.2 mSv, respectively, 
(P < 0.05). In anesthesiology, mean values of DAP and 
effective dose were higher for pain control management 
0.64 ± 0.50 mGy∙m2 and 12.81 ± 10.21 mSv, respectively 
(P < 0.05). In urology, mean values of DAP and effective 
dose were higher in percutaneous nephrolithotomy at 1.63 
± 1.20 mGy∙m2 and 32.61 ± 24.11 mSv, respectively (P < 0.05). 
In vascular surgery, mean values of DAP and effective 
dose were higher in angiography-extremity at 1.63 ± 1.20 
mGy∙m2 and 32.61 ± 24.11 mSv, respectively (P < 0.05). In 
liver transplantation surgery, mean values of DAP and 
effective dose were higher for intra-operative mesenteric 
portography at 2.9 ± 3.81 mGy∙m2 and 58.03 ± 76.24 mSv 
(P < 0.05). Thus, intra-operative mesenteric portography 
exhibited the highest mean DAP, followed by kyphoplasty, 
percutaneous nephrolithotomy, neurological posterior 
lumbar fusion, and posterior lumbar fusion. Maximum 
value of DAP was higher in intra-operative mesenteric 
portography, followed by facet nerve injection, percutaneous 
nephrolithotomy, posterior lumbar fusion, and kyphoplasty. 
There was no associations between surgical type and either 
DAP or effective dose (P > 0.05) [Table 2].

DISCUSSION

Surgical operations and procedures represent a source 
of high-dose radiation because the involved process is 
complicated and lengthy. Thus, fluoroscopic imaging 
lasted a long time. As mobile C-arm fluoroscopic systems 
are designed to automatically control radiation, radiation 
dose to the patient is not easy to measure. In addition, a 
part of the body exposed to primary radiation is changed 
with fluoroscopic conditions, making dose measurement 
difficult. Therefore, DAP is used as an alternative to 
estimating the doses of radiation exposure. Validity of DAP 
as an indicator of radiation risk is justified by the theory 
that possible effects of radiation on patients are correlated 
with radiation dose and exposure area.[16] In this study, 
effective dose was calculated by multiplying DAP values 
displayed on mobile C-arm monitor with effective dose 
conversion factor to ensure validity. In general, radiation 

doses should be measured on exposed skin or tissues. 
The use of the dosimeter is not realistic for the patient and 
surgical members in the operating room. Radiation dose 
from fluoroscopy depends on a variety of factors, including 
fluoroscopy time, the distance between patient and the 
source, angle, size and shape of collimator, patient-receptor 
distance, magnification, and AEC. In addition, surgical 
procedures, position of surgical members and radiation 
protection methods affect radiation exposure. Accurate dose 
measurement is very difficult.[17]

In this study, orthopedic surgery used mobile C-arm 
systems most frequently, but mean recorded fluoroscopy 
time was 78.53 s, which was one-third that of the overall 
mean of 229.96 s with DAP was as low as 0.38 mGy∙m2 and 
2.92 mGy∙m2. Among operation types, proximal femoral 
nail antirotation and femoral nail antirotation exhibited 
high DAP. Bae et al.[18] claimed that the radiation dose was 
high in tibia and femor fracture nail antirotation but still 
was relatively safe, as dose limit was not exceeded. Crawley 
and Rogers[19] reported mean DAP value of 0.39 Gy∙cm2 for 
open reduction and internal fixation, 1.62 Gy∙cm2 for femoral 
nail antirotation, 2.58 Gy∙cm2 for dynamic hip screw 10.17 
Gy∙cm2 for L spine fusion, 1.29 Gy∙cm2 for C spine injection 
facets, and 2.08 Gy∙cm2 for L spine injection facets. The 
findings of this study are consistent with these previous 
reports, although DAP value for GK nail and dynamic 
hip screw were 2-10 times higher in that study. The DAP 
values in these two procedures were nearly 10 times higher 
than those reported in Botchu and Ravikumar study.[20] 
The differences in radiation dose are likely associated with 
surgical experience and competence and condition of 
surgical sites.

The highest DAP value was found in intra-operative 
mesenteric portography performed during liver transplant 
in this study. As reported in a study by Vano et al.,[6] high 
dose of radiation likely resulted from the nature of liver 
transplantation, in which fluoroscopy times are long and 
serial angiograms are needed. The second highest DAP was 
observed for kyphoplasty showing mean and maximum 

Table 1: Fluoroscopy time, dose-area product and effective dose by surgical specialty
Departments Number of 

patients (%)
Fluoroscopy DAP Effective dose 

(mSv)
DAP Effective 

dose (mSv)
P χ2 P

Times mean (s) Mean (mGy∙m2) Maximum 
(mGy∙m2)

Orthopedic surgery 165 (44.1) 78.53 0.27±0.54 5.40±10.80 2.92 58.4 0.000 2195.07 0.643
Neuro surgery 43 (11.5) 82.43 0.95±0.94 19.0±18.8 3.63 72.6
Anesthesiology 77 (20.6) 70.25 0.64±0.94 12.8±18.8 4.09 81.8
Urology 41 (11.0) 172.5 1.06±0.97 19.6±19.4 3.8 76
Pediatric surgery 7 (1.9) 17.33 0.05±0.03 1.00±0.20 0.11 2.2
Vascular surgery 5 (1.3) 771.68 1.10±0.60 22±12.0 1.58 31.6
Liver transplantation 
surgery

36 (9.6) 416.99 2.90±3.76 58±75.2 18.24 364.8

DAP = Dose-area product
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values of 1.94 ± 0.70 mGy∙m2 and 3.6 mGy∙m2, respectively. 
The results are higher than corresponding values of 
2.73 Gy∙cm2 and 6.366 Gy∙cm2, respectively, as reported in 
Boszczyk et al. study.[21] Theocharopoulos et al.[22] estimated the 
effects of kyphoplasty, spine surgery, and hip joint surgery on 
surgeon at 90%, 8% and 2%, respectively. The possible cause 
of cancer as a result of radiation exposure during fluoroscopic 
procedures cannot be ruled out. The European Commission 
on Radiological Protection reported one per 1000 patients is 
prone to solid cancer or leukemia during the lifetime upon 
exposure to a radiation dose of 10 mSv.[12] Caution should be 
taken in dealing with high radiation dose during surgery, and 
aggressive protection is necessary.

The findings of this study magnify the importance of 
assessing frequency of radiation usage and radiation dose 

with the use of intra-operative mobile C-arm, as part of an 
effort to protect against radiation exposure. Understanding 
that DAP values vary with surgical specialty and operation 
types on the part of surgical personnel is crucial for effective 
dose management.

The limitations of this study are as follows. First, data of one 
hospital were used only without other devices of various 
hospitals. Second, the study has a DAP related limit. It was not 
possible to measure accurate exposure doses as there was no 
unique feature of patients and DAP calculates the estimated 
level in the test of each patient. Third, dose could not be added 
as there was no supply of Exam information of the C-arm device.

The findings of this study can serve as basic data for effective 
radiation protection and safe radiation management.

Table 2: Fluoroscopy time, dose-area product and effective dose by surgical type
Number 

(%)
Fluoroscopy DAP Effective 

dose (mSv)
DAP Effective 

dose (mSv)
P χ2 P

Times 
mean (s)

Mean 
(mGy∙m2)

Maximum 
(mGy∙m2)

Orthopedic surgery
ACDFa 15 (4.0) 9.89 0.02±0.01 0.40±0.20 0.04 0.8 0.000 7078.35 0.340
Deformity correction 33 (8.8) 17.18 0.05±0.05 1.20±6.40 0.32 6.4
Posterior lumbar fusion 5 (1.3) 107.9 1.20±0.82 24.2±16.40 2.39 47.8
Kyphoplasty 5 (1.3) 109.54 1.09±0.56 21.8±11.20 1.71 34.2
Proximal femur nail anti-
rotation

12 (3.2) 249.07 1.12±0.84 22.4±16.80 2.92 58.4

Nail-femur 9 (2.4) 219.21 1.11±0.72 22.20±14.40 2.23 44.6
Dynamization 5 (1.3) 94.96 0.32±0.49 6.40±9.80 1.2 24
Dynamic hip screw 6 (1.6) 109.13 0.42±0.35 8.42±7.02 0.78 15.6
LM allograft 7 (1.9) 20.76 0.03±0.02 0.61±0.42 0.04 0.8
ORIFb-leg 19 (5.1) 67.11 0.07±0.05 1.40±+1.02 0.15 3
ORIFb-ankle 17 (4.5) 35.14 0.04±0.02 0.80±0.41 0.12 2.4
ORIFb-humerus 7 (1.9) 62.11 0.07±0.05 1.42±1.00 0.23 4.6
ORIFb-distal radius 8 (2.1) 77.35 0.04±0.02 0.81±0.41 0.12 2.4
ORIFb-wrist 9 (2.4) 59.39 0.03±0.02 0.61±0.41 0.07 1.4
RIc-ankle 8 (2.1) 21.15 0.02±0.01 0.401±0.21 0.05 1

Neuro surgery
Deep brain stimulation 7 (1.9) 29 0.15±0.12 3.01±2.40 0.36 7.2
ACDFa 8 (2.1) 58.13 0.40±0.21 8.10±4.21 0.78 15.6
Posterior lumbar fusion 18 (4.8) 85.11 1.35±0.90 27.02±18.01 3.63 72.6
Kyphoplasty 5 (1.3) 186.2 1.94±0.70 38.80±14.01 3.6 72
Nerve root block 5 (1.3) 82.72 0.81±0.50 16.2 1.2 24

Anesthesiology
Ingection 77 (20.6) 70.25 0.64±0.50 12.81±10.21 4.09 81.8

Urology 0
Percutaneous nephro 
lithotomy

23 (6.1) 259.03 1.63±1.20 32.61±24.11 3.8 76

Retrograde pyelography 18 (4.8) 61.94 0.34±0.20 6.8 1.44 28.8
Pediatric surgery

Chemoport insertion 7 (1.9) 17.33 0.05±0.02 1.02±0.47 0.11 2.2
Vascular surgery 31.6

Angiography-extremity 5 (1.3) 771.68 1.10±0.08 22.02±1.61 1.58
Livertransplantation surgery

Intra-operative portography 36 (9.6) 416.99 2.9±3.81 58.03±76.24 18.24 364.8
aACDF = Anterior cervical discectomy and fusion; bORIF = Open reduction and internal fixation; CRI = Removal implant; DAP = Dose-area product; LM = Lateral meniscus



Lee, et al.: Radiation risk to patients from intra-operative

Journal of Research in Medical Sciences| January 2015 | 12

CONCLUSIONS

Surgical members need to understand effects of intra-operative 
radiation and make efforts to prevent any risks stemmed 
from radiation. Staff members are recommended to wear a 
dosimeter for effective dose management, and surgeons need 
to ensure radiation protection for patients and surgical staff.
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