Controlling childhood obesity: A systematic review on strategies and challenges

Roya Kelishadi, Fatemeh Azizi-Soleiman¹

Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primary Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, 1School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

Background: Childhood obesity is a global health problem with short- and long-term health consequences. This systematic review presents a summary of the experiences on different family-, school-, and clinic-based interventions. Materials and Methods: Electronic search was conducted in MEDLINE, PubMed, ISI Web of Science, and Scopus scientific databases. We included those studies conducted among obese individuals aged up to 18 years. Our search yielded 105 relevant papers, 70 of them were conducted as high quality clinical trials. Results: Our findings propose that school-based programs can have long-term effects in a large target group. This can be related to this fact that children spend a considerable part of their time in school, and adopt some parts of lifestyle there. They have remarkable consequences on health behaviors, but as there are some common limitations, their effects on anthropometric measures are not clear. Due to the crucial role of parents in development of children's behaviors, family-based interventions are reported to have successful effects in some aspects; but selection bias and high dropout rate can confound their results. Clinic-based interventions revealed favorable effects. They include dietary or other lifestyle changes like increasing physical activity or behavior therapy. It seems that a comprehensive intervention including diet and exercise are more practical. When they have different designs, results are controversial. Conclusion: We suggest that among different types of interventional programs, a multidisciplinary approach in schools in which children's family are involved, can be the best and most sustainable approach for management of childhood obesity.

Key words: Adolescent, child, control, obesity, prevention

How to cite this article: Kelishadi R, Azizi-Soleiman F. Controlling childhood obesity: A systematic review on strategies and challenges. J Res Med Sci 2014;19:993-1008.

INTRODUCTION

The epidemic of childhood obesity is no more limited to high-income countries,[1-8] and has become as one of the most important global health problems of the 21th century.[9] The World Health Organization (WHO) experts have estimated that there are 43 million overweight children under the age of 5 and by 2020 more than 60% of global disease burden will be the result of obesity related disorders. [2,10] Childhood obesity is associated with several short term and long-term health hazards as cardiovascular diseases, hypertension, type 2 diabetes, fatty liver disease, orthopedic problems, low self-esteem, etc.[11,12] Childhood obesity can reduce life expectancy by 2-5 years.^[2] Moreover, the increasing trend of obesity has enormous economic outcomes.^[13] Two main underlying causes of excess weight are genes and environment.[14,15] Although both genes and environment have a role in an obesity epidemic, gene defects needs to time to show their phenotype; so obesogenic environment is responsible for obesity.[11]

Primordial/primary prevention of pediatrics obesity and establishment of a healthy lifestyle behaviors from early life are the favored against the epidemic of obesity at the global level.^[16]

Effective interventions for prevention and control of childhood obesity should be considered for different aspects.[11,17-24] Experts recommend specific eating and physical activity (PA) behaviors through counseling.[14] Along with clinic-based interventions, researchers have attempted to manage obesity by virtue of family, community, school, and after school programs. Based on Cochrane review of obesity prevention programs in children, most of the welldesigned interventions had positive results especially in 6-12-year-old children. [25] Clearly targeted interventions for children and population-based approach for adolescents may be useful and make economic sense. The purpose of this investigation was to systematically review the effects of various clinical-, family-, and community-based interventions targeting the control of childhood obesity and make a suggestion for future interventions.

Address for correspondence: Dr. Fatemeh Azizi-Soleiman, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail: fatimaazizisoeliman@gmail.com

Received: 22-10-2013; Revised: 26-01-2014; Accepted: 03-03-2014

MATERIALS AND METHODS

Literature search

Relevant literature reporting the interventions for controlling excess weight in children and adolescents was identified through electronic search of papers published from 2000 to 2012 in MEDLINE, PubMed, ISI Web of Science, and Scopus. Keywords such as "childhood obesity", "overweight," "weight disorder," "intervention," "treatment," "management," "control," "PA," "nutrition," "behavior therapy," and "diet therapy" were used. The searches yielded 1768 articles.

Study selection and eligibility criteria

Having removed duplicates, the relevant papers were selected in three phases. In the first and second phases, titles and abstracts of papers were screened and irrelevant papers were excluded. In the last phase, the full text of recruited papers was explored deeply to select only relevant papers. All these three screening phases were done by two independent reviewers (RK and FA). Discrepancies were resolved by consultation and consensus.

Studies were included if they met the following criteria: Studies on 2-18-year-old children; community, family, school, and clinic interventions or a combination of them; English language; and conducted among obese or overweight children and adolescents. Systematic reviews, meta-analysis, and editorials were excluded. Articles were firstly assessed on their abstracts and 234 were removed.

Data extraction and abstraction

The required information that was extracted from all eligible papers was as follow:

- (i) General characteristics of the study (first author's name, publication year, study year, study design, sampling method,
- (ii) Characteristics of the study population (age and sex of studied participants and sample size, follow-up),
- (iii) Type and duration of the intervention, measure(s) used to assess child weight, and
- (iv) Main finding. One reviewer (FA) extracted the data while another (RK) randomly selected 10% of them and checked their extracted data.

The selection process of our systematic review is presented in Figure 1.

RESULTS

The interventions were categorized as school-based, family-based, and clinic-based programs as described below:

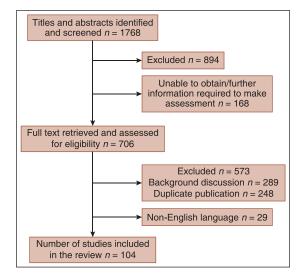


Figure 1: Flow chart of study selection process

School-based programs

A summary of the school-based obesity prevention and control programs is presented in Table 1. In brief, such interventions are suggested to be feasible and effective; [26] because students spend a considerable part of their time in school, [27] moreover teachers and peers can be engaged in such programs.^[28] These kinds of programs can improve health behaviors in a large target group. They are characterized by nutritional education and changes in dietary habits, as well as increase in PA through structured programs. [29] Findings of various studies proposed that the effects of such interventions will be preserved for several years after intervention. [30-32] This effect has been of special concern about consuming fruits and vegetables, and healthy snacks, as well as increased PA. Nevertheless, the impact of school-based programs on obesity prevention is controversial and remains to be determined by large studies with long-term follow-up research. Some studies have not evaluated the effect of intervention on anthropometric measures, [27,33,34] but they have shown positive impacts on eating and activity behaviors. The most common limitation of these studies is presenting self-reported data, nonrandomized selection of schools, short duration of study, and not masking the interventional groups.

Family-based programs

Reaching a healthy weight is not successful unless children have support for making healthy behavior choices; obviously, providers of this support are families. Family is an applicable target for health promoting interventions. Family-based intervention programs are considered as one of the most successful methods for obesity treatment or prevention. Engaging parents in childhood obesity prevention programs may make weight loss easier for children; because they can provide confirmatory conditions to help their children to choose

Author, year,	-based weight cor Design	Study	Duration of	Type of intervention	Outcome	Results
country		participants	intervention	**		
Contento <i>et al.</i> , 2010, USA ^[27]	Pre-post, cluster randomized intervention-control	11-13 years old children	8-10 weeks	Behavioral education	Energy balance- related behaviors	Intake of less sweetened beverages and packaged snacks, smaller portion of fast food, increased walking, and decreased screen time
McMurray <i>et al.</i> , 2002, USA ^[26]	2_2 factorial design with three treatment groups and a control group	11-14 years old children	8 weeks	ExO, EdO, and combined EE	Weights, and skinfold thicknesses and BMI	BMI did not change significantly, sum of skinfolds enhanced less in exercise groups
Bayer <i>et al.</i> , 2009, Germany ^[35]	Randomized, controlled trial	3-6 years old children	6 months	Behavioral intervention (increase of regular PA and modify food and drink consumption habits	Prevalence of overweight and obesity	Children who intake high fruit and vegetable enhanced, prevalence of overweight and obesity were not statistically different between groups
Neumark-Sztainer et al., 2003, USA ^[36]	Randomized, controlled trial	9 th and 10 th grade girls	8 months	Increased PA, nutritional and social support	PA, eating patterns, self- perceptions, and BMI	A positive effect on PA level, eating habits, and self-image but no impact on BMI
Going <i>et al.</i> , 2003, USA ^[37]	Multicentered, randomized trial	10.5±0.08 years old children	3 years	Increased frequency and quality of physical education	School's mean PBF	No significant difference in PA level or PBF between groups
Donnelly <i>et al.</i> , 2009, USA ^[38]	Cluster randomized, controlled trial	9 th and 10 th grade children	3 years	Vigorous PA	BMI, daily PA and academic achievement	No significant differences in BMI or BMI percentile changes between groups but doing >75 min of exercise per week resulted in significantly less enhancement in BMI
Kipping <i>et al.</i> , 2010, England ^[33]	Pilot cluster randomized controlled trial	9-10 years old children	5 months	Nutrition education, increase of PA, decrease of TV viewing	Dietary behaviors	More intake of fruit and vegetable and healthy snacks
Mauriello <i>et al.</i> , 2010, USA ^[39]	Randomized, controlled trial	9 th , 10 th , or 11 th grade adolescents	1 year	PA, fruit and vegetable consumption, and limited screen time	BMI	Less overweight children in intervention group
Bürgi <i>et al.</i> , 2012, Switzerland ^[40]	Cluster-randomized controlled trial	4-6 years old children	1 year	PA, nutrition, media use and sleep	BMI, aerobic fitness, %BF and WC	Reduction of BF but not BMI and improved fitness
Sevinç <i>et al.</i> , 2011, Turkey ^[41]	Field-type intervention	1 st -7 th grade children	8 months	Groups were randomly divided into PA and nutrition education, nutrition education, and control	BMI	Less BMI increase in intervention groups
Greening <i>et al.</i> , 2011, USA ^[42]	Randomized controlled trial	6-10 years old children	9 months	Education about nutrition and PA	Adiposity, nutrition knowledge, dietary habits	A significant decline in BF percentage and improvement in dietary fat intake
Shah <i>et al.</i> , 2010, India ^[34]	A school-based intervention program	8-18 years old children	29 months	Education about nutrition, PA, healthy cooking	Knowledge and behavior	Rise in knowledge especially in 8-11 years old children
Muckelbauer et al., 2009, Germany ^[43]	Randomized controlled cluster trial	Second and third grades of elementary schools	10 months	Increase in water consumption by water fountains installation	Body weight and beverage consumption	Decline of overweight relative frequency
Fung <i>et al.</i> , 2012, Canada ^[44]	-	Grade 5 students	3 years	Healthy eating and active living strategies	Dietary intake, PA, BMI	Fruit and vegetable intake and PA enhanced, calorie intake declined, children were less obese
Sigmund <i>et al.</i> , 2012, Czech Republic ^[45]	Non-randomized longitudinal intervention	6-9 years old children	2 years	PA programs	PA levels, body weight and BMI	1 year later, the odds of being overweight or obese in children was three times lower and these odds declined with the duration of the intervention
Thivel <i>et al.</i> , 2011, France ^[46]	Randomized, controlled trial	6-10 years old children	6 months	PA program	BMI, WC, skinfold thickness, cardiorespiratory fitness	No effect on anthropometric measures but improvement in aerobic and anaerobic fitness
						(Continued

Table 1: (Continuation vers	•	Study	Duration of	Type of intervention	Outcome	Results
Author, year, country	Design	participants	intervention	Type of intervention	Outcome	Results
Plachta-Danielzik et al., 2011, Germany ^[30]	Randomized, controlled trial	6 years old children	1 year	Nutrition education, increase in PA and decrease in TV consumption	BMI-SDS and overweight, %FM and WC, their z-scores, food intake	After 8 years, there were favorable and sustained results on BMI-SDS which were most notable in students of high socioeconomic status families
Bacardí-Gascon et al., 2012, Mexico ^[28]	Quasi-experimental randomized cluster controlled trial	2 nd and 3 rd grade elementary school children	6 months	Decrease in sedentary behavior, nutrition education	BMI z-score, WC, overweight and obesity prevalence	At 6 months differences were observed in BMI and after 24 months, BMI z-score and WC enhanced and abdominal obesity declined
Foster <i>et al.</i> , 2008, USA ^[47]	Randomized controlled cluster trial	4-6 th grade school children	2 years	Meal supply, nutrition education, nutrition policy, social marketing, parent outreach	Weight, BMI z scores, dietary intake, PA	50% decline in overweight incidence but not obesity
Plachta-Danielzik et al., 2007, Germany ^[32]	Randomized, controlled trial	6 years old children	1 year	Nutrition education, increase in PA and decrease in TV consumption	BMI percentiles, healthy eating index	Cumulative incidence of overweight after 4 years was less only in children's of high socioeconomic status families
Johnston, 2010 et al., Texas ^[48]	Participants were randomized to either the ILI or SH	10-14 years old adolescents	1 year	Increasing healthy eating and PA using behavioral strategies to individualize the plans which was parent-guided in SH and trainer guide in ILI group	Weight, TSF, zBMI	zBMI and TSF declined more in ILI children after 1 and 2 years
Jiang <i>et al.</i> , 2007, China ^[49]	-	7-10 years old children	3 years	Nutrition and PA education for children and parents	Weight, BMI	Obesity and overweigh preponderance declined
Lubans <i>et al.</i> , 2010, Australia and New Zealand ^[29]	Multi-component school-based intervention	14-18 years old adolescents	6 months	Sport sessions, PA and nutrition handbooks, interactive seminars, lunch-time activities, leadership sessions, and pedometers for self- monitoring	Weight, BMI	Significant interaction impact on BMI, BMI z-score, and BF at the end of study
Duncan <i>et al.</i> , 2009, England ^[50]	Circuit-based training	10-11 years old children	6 weeks	Polymeric type exercises	Body image, BM, BMI	BMI declined significantly
Vissers <i>et al.</i> , 2008, Belgium ^[51]	Multidisciplinary school-based lifestyle intervention	16-18 years old adolescents	6 months	Nutrition counseling and active healthy life style	Weight, BMI, WC	Mean weight decline after the study was 2.23 kg
Klein <i>et al.</i> , 2010, Germany ^[52]	Low threshold health promotion intervention	4-5 years old children	6 months	Meeting for parents and educator about healthy lifestyle	Body weight, BMI	BMI declined but only in boys
Kang <i>et al.</i> , 2008, Korea ^[53]	Two-group pre-test/ post-test design	4-6 th grade students	8 weeks	Group education, phone counseling, obesity management points for mothers	Self-control behavior, obesity index, abdominal circumference	Decline in obesity index, abdominal circumference, and B percent
James <i>et al.</i> , 2007, England ^[54]	-	7-11 years old children	1 year	Education about healthy diet and decrease consumption of carbonated beverages or no intervention	Weight, BMI z scores, WC	3 years after the intervention, BMI z-score reduced in intervention group but obesity prevalence extended in both groups
Caballero <i>et al.</i> , 2003, USA ^[55]	Randomized, controlled, school- based trial	3-5 th grade children	3 years	Change in dietary intake, increase in PA, healthy eating education	Weight, triceps and subscapular skinfold thicknesses, Percentage BF, PA, Knowledge, attitudes, and behavior, dietary intake	No significant changes in anthropometric outcomes

Table 1: (Cont	inued)					
Author, year, country	Design	Study participants	Duration of intervention	Type of intervention	Outcome	Results
Rosado <i>et al.</i> , 2008, Australia and New Zealand ^[56]	Randomized clinical trial	6-12 years old children	12 weeks	Four different treatments: 1 serving of RTEC for breakfast or 1 serving of RTEC for breakfast and dinner or 1 serving of RTEC for breakfast plus nutrition education or no intervention	Anthropometry, body composition	Body weight, BMI and total BF fell off significantly in the RTEC and nutrition education group
Spiegel and Foulk, 2006, USA ^[57]	Multidisciplinary elementary school- based intervention	4 th and 5 th grade children	1 school year	PA and healthy behavior education	BMI, weight	Significant positive changes in BMI, enhancement of fruit and vegetables consumption and PA
Gleason and Dodd, 2009, USA ^[58]	Cross-sectional	1 st -12 th grade children	-	School Breakfast Program and National School Lunch Program	BMI, BMI percentiles, BMI z-scores	Only school breakfast participation was associated wit less BMI

ILI = Instructor-led intervention; SH = Self-help; ExO = Exercise only, EdO = Education only, EE = Exercise and education; PA = Physical activity; RTEC = Ready to eat cereal; BMI = Body mass index; TSF = Tricep skinfold; WC = Waist circumference; SDS = Standard deviation score; PBF = Percent body fat; FM = Fat mass; BF = Body fat; BM = Body mass

healthy behaviors, furthermore they are important role models for their children. [60] It is difficult for parents to know and accept that their child has excess weight, and that recommended diets would not have adverse health effect for their children; [61] therefore, they often do not comprehend the necessity of obesity prevention. Families are able to construct children's lifestyle habits, perhaps through their "parenting style" and management of "family functioning." [62] Table 2 shows family-based interventions for management of childhood obesity. As it demonstrates, most of these programs were successful in decreasing body mass index (BMI) z-score and some health consequences of overweight. After participation of parents in these kinds of programs, their children consumed more fiber and were less sedentary. In some cases, significant decrease in fat mass is documented, as well.[63,64] It has shown that low parental confidence predicts dropout rate from family-based behavioral treatment. [65] The main limitation of family-based studies is the small sample size, high dropout rate, no follow-up data, and selection of motivated families.

Clinic-based programs

Table 3 presents a summary of clinic-based weight management programs conducted in the pediatric age group. Although most researchers have tried low calorie-low fat diets for treating obesity, experts have recommended to consider a diet with balanced macronutrients. [14] Nevertheless, different dietary changes have been tried to control excess weight in children and adolescents. High protein (HP) diets seems to make more satiety, but two studies did not confirm their advantage versus standard diets. [90,91]

In studies in which diet, exercise or both of them were taken into account, nutrition plus PA had more effect on anthropometric indices. [99,103,124] One study showed that combination of aerobic and strength training along

with diet therapy results in BMI decrease in comparison with strength training plus diet recommendation. [127] A successful experience is reported about the favorable effects of zinc supplementation on anthropometric and metabolic indices. [102,133]

Obesity behavioral therapy has different parts such as motivational interviewing, goal setting, positive reinforcement, monitoring, and cognitive restructuring. [134] Most of behavioral therapies had positive consequences on weight, BMI, or dietary and PA habits. [92,98,107,108,116]

All interventions that consisted of nutrition, exercise, and counseling had significant effects on body weight or other obesity-related factors^[84,93,96,100,101,105,109,111-115,117,118,120,128,135] except for a study, which had beneficial effects only on obesity related behaviors.^[97] The main limitation of some of these studies is lack of comparison with the control group, and short-term follow-up of participants, and the uncertain sustainability of such kinds of interventions.

DISCUSSION

This review evaluated three different approaches in childhood obesity management. As the design of most studies is a clinical trial, it makes their comparison easier. Schools are a safe place for learning healthy skills and continuing them during life. Most (29/32) of the papers reported a positive effect of school-based intervention on dietary habits or anthropometric measures. One of negative effects of this kind intervention is discrimination resulted from stigmatization. This may persuade them to get involved in healthier lifestyle or might have opposite results. All of the studies conducted in the family setting (n = 26), had favorable results on obesity criteria. Although some of them had negligible effects. Clinic-based intervention had different methods but almost the same results.

Author, year,	Design	Study	Childhood Duration of	Type of intervention	Outcome	Results
country	Design	-	intervention	**	Outcome	nesuits
Danielsen <i>et al.</i> , 2013, Norway ^[66]	Consecutive randomization procedure	7-13 years old children	12 weeks	Cognitive behavioral weight management program	BMI SDS	Mean BMI SDS reduced 0.18 units that was sustained after 12 months follow-up
West <i>et al.</i> , 2010, Australia ^[67]		4-11 years old children	12 weeks	Increasing parents' skill in managing children behaviors	BMI z-score, weight, lifestyle behavior	BMI z-score and unhealthy behavior were less
Vos <i>et al.</i> , 2012, Holland ^[68]	Randomized clinical trial	11-15 years old teenagers	3 months	Nutritional and psychological counseling through CBT	Weight, BMI-SDS	Significant fall in BMI-SDS after the study and 1 year later
Sacher <i>et al.</i> , 2010, UK ^[69]	Randomized controlled trial	8-12 years old children	21 weeks	Group educational and PA sessions	Body weight, height, and WC	WC and BMI z-score reduced significantly after the study and 6 months later
Teder <i>et al.</i> , 2012, Sweden ^[70]	Single-group pre- and post-intervention feasibility study	8.3-12-years old children	2 years	Education about healthy eating, PA and problem solving	Change in standardized BMI, change in the W/H	Standardized BMI declined with r change in W/H ratio
Edwards <i>et al.</i> , 2006, UK ^[71]	Pre- and post- treatment assessment for four consecutive treatment groups	8-13 years old children	6 months	Advice on modify micro environment of home	Change in BMI- SDS, change in percentage of BMI median centile for age, sex and height	Children turned a loss of 8.4% in BMI that was sustained after 3 months
Bean <i>et al.</i> , 2012, JSA ^[72]	Randomized controlled pilot	6-11 years old children	1 year	Parenting skill and role modeling to improve healthy habits	BMI percentile, dietary records	An increment in children's fiber intake and parents' protein consumption in whereas no impa on children's BMI percentile
Gunnarsdottir et al., 2012, celand ^[73]	Epstein's FBBT	7.5-13.6 years old children	18 weeks	Advice on whole family lifestyle change	Height, weight, reports of psychological well-being	BMI-SDS declined particularly in children with clinical range score of social anxiety
Kalavainen et al., 2012, Finland ^[63]	Randomized clinical trial	7-9 years old children	6 months	Interactive functional activities and lectures about healthy lifestyle	BMI, body composition	Weight/height ratio and FM reduced and lean BM increased
Melin and Lenner, 2008, Sweden ^[74]	-	7 years old children	1 year	Dietary and PA advice and unstructured exercise	Changes in wellbeing, life style and BMI z-score	Mean BMI z-score declined, a good or fair dietary advice adherence was seen in children who their z-score reduced or sustained respectively
Kalavainen <i>et al.</i> , 2007, Finland ^[75]	Randomized controlled intervention study	7-9 years old children	6 months	Routine counseling through booklet or family-based group treatment (behavioral and solution-oriented therapy)	Change of weight for height, changes in BMI and BMI-SDS	Group treatment resulted in losin more W/H and less BMI and BM SDS, after 6 months, differences between groups still were visible
Hughes <i>et al.</i> , 2008, Scotland ^[76]	Randomized, controlled trial	5-11 years old children	6 months	Best-practice behavioral program or standard care (control)	BMI z-score, weight, fat distribution, quality of life, and height z-score	No significant impact on BMI z ir intervention group but 12 m after the study, they had significant less weight increment
Avery <i>et al.</i> , 2012, UK ^[77]	Family-based group program	11-15 years old adolescents	8 months	Encouragement of whole family for adopting healthier lifestyle habits	Height, weight, BMI z-score	A mean (SD) BMI z-score change of 0.22 units
_ooneyand Raynor, 2012, USA ^[78]	Family-based behavioral pediatric weight management randomized controlled trial	5-9 years old children	6 months	3 treatment: Increase in growth monitoring with feedback, decrease in snack foods and sugar-sweetened beverages, and increase in fruits and vegetables and low fat dairy	Relationship between changes in fruits and vegetables, snack foods, and energy intake	No relationship between fruits, vegetables and snack food intake reduction in snack food ingestion were significantly associated with less energy intake but increment fruits and vegetables consumptio were not
Garipağaoğlu <i>et al.</i> , 2009, Furky ^[79]	Randomized, controlled trial	6-14 years old children	3 months	Induce healthy eating behavior and reduce sedentary habits plus hypocaloric diet through group treatment or individual treatment	Weight, BMI SDS	Significant reduction in BMI-SDS in both groups that was sustaine 1 year later in group treatment, significant more fruit and vegetal intake and decline in carbonated beverages drinking in both group

Table 2: (Contin	nued)					
Author, year, country	Design	Study participants	Duration of intervention	Type of intervention	Outcome	Results
Pinard <i>et al.</i> , 2012, USA ^[80]	Mixed quantitative and qualitative pilot study	8-12 years old children	3 months	Parent behavior change, role modeling, home environmental change	Weight, BMI	BMI z-score decreased whereas lean muscle mass increased
Golley <i>et al.</i> , 2007, Australia ^[81]	Single-blinded, randomized, controlled trial	6-9 years old children	12 months	3 groups: Parenting- skills training, family lifestyle change, wait- listed control	BMI, and waist- circumference z-score	BMI z-score fell off by 10% in family involved group and 5% in two other groups, WC z-score reduced in treatment groups
Jiang <i>et al.</i> , 2005, China ^[82]	Randomized controlled trial	Grade 7-9 school children	2 years	Dietary behavior modification, goal setting, increase in PA	Weight, BMI-SDS	Significant differences in alteration of BMI and BMI-SDS between groups
Stark <i>et al.</i> , 2011, USA ^[83]	Pilot randomized controlled trial	2-5 years old children	6 months	Behavioral intervention for increasing healthy eating and activity or enhanced standard care	Weight, BMI z-score and BMI percentile	Significant more decline of BMI z-score percentile and weight which was sustained 1 year later in behavioral treatment program
Skelton <i>et al.</i> , 2008, USA ^[84]	-	2-18 years old children	12 months	Cognitive behavioral modification, nutrition and PA education	BMI, BMI z-score	Significant decline in BMI z-score
Papadaki <i>et al.</i> , 2010, Netherlands, Denmark, United Kingdom, Greece, Germany, Spain, Bulgaria, and Czech Republic ^[85]	Randomized clinical trial	4-18 years old children	26 weeks	5 ad libitum diets: LP/ LGI, LP/HGI, HP/LGI, HP/HGI, control	Weight, BMI	Significant reduction in proportion of overweight to obese children percentage in HP/LGI group
Berkowitz <i>et al.</i> , 2011, USA ^[86]	Randomized controlled trial	13-17 years old adolescents	12 months	Meal replacement in life modification program or isocaloric conventional diet	Weight, percentage change in initial BMI	Significant increment in weight loss and BMI decrement in meal replacement group, no difference between groups in BMI change percentage in weight maintenance period
Epstein <i>et al.</i> , 2008, USA ^[87]	Randomized controlled trial	8-12 years old children	24 months	Reducing high fat, high sugar foods or increasing healthy food groups	Weight, BMI, zBMI	More decrement in z-BMI that was sustained and greater decline in parents concern about child weight
Duggins <i>et al.</i> , 2010, USA ^[88]	Randomized controlled effectiveness trial	5-17 years old children	12 months	Nutrition classes only or YMCA program (exercise) plus nutrition classes	Weight, year change in BMI-for- age percentile	YMCA participants had a mean increment of 0.3 BMI units in comparison with an enhancement of 0.6 BMI units in the other group
Savoye <i>et al.</i> , 2011, Sweden ^[64]	Parallel-group, randomized controlled trial	8-16 years old children	12 months	Intensive lifestyle intervention or clinic control group	Weight, BMI, PBF, total BF	Treatment impact was sustained after 24 months in treatment group for BMI z-score, BMI, BF percentage, and total BF mass
Davis <i>et al.</i> , 2011, USA ^[89]	-	10 years old children	2 months	Nutrition, exercise, behavior sessions through telemedicine or physician visit	Weight, BMI, BMI percentile	A small change in BMI of both groups

or physician visit

FBBT = Family-based behavioral treatment; CBT = Cognitive behavioral therapy; LP = Low protein; LGI = Low glycemic index; HGI = High glycemic index; HP = High protein; BMI = Body mass index; BF = Body fat; PBF = Percent body fat; SDS = Standard deviation score; W/H = Waist:height ratio; WC = Waist circumference; SD = Standard deviation; PA = Physical activity; FM = Fat mass; BM = Body mass

Author, year, country	Design	Study participants	Duration of intervention	Type of intervention	Outcome	Results
Bauer <i>et al.</i> , 2010, Netherlands ^[92]	Clinical trial	7-12 years old children	12 weeks	CBGT and then SMS-based maintenance treatment for 36w	BMI-SDS	Significant decrease of BMI-SDS by 0.20 units during CBGT and the decline of BMI-SDS by 0.07 units during the SMSMT (non-significance
· [· · · · · · · · · · · · · · · · · ·	Multidisciplinary inpatient program	12-15 years old adolescents	12 weeks	Daily PA, low calorie diet, behavior modification	Weight, BF	All attendees dropped of a significant quantity of weight and BF

Table 3: (Contin		Chiralia	Duration of	Type of interpreties	Outcom	Paguita
Author, year, country	Design	Study participants	Duration of intervention	Type of intervention	Outcome	Results
Yackobovitch- Gavan <i>et al.</i> , 2009, Israel ^[94]	Randomized clinical trial	6-11 years old children	12 weeks	3 groups: ExO, diet only, and combination of diet and exercise	Weight, BMI, BMI-SDS, body composition	BMI, BMI-SDS and FM decline were significantly higher in the diet including groups
Rezvanian <i>et al.</i> , 2010, Iran ^[95]	Randomized, triple masked, placebo- controlled clinical trial	10-16 years old children	12 weeks	4 groups: Metformin, fluoxetine, a combination of the two drugs, or placebo	Weight, BMI, BMI-SDS, WC	BMI reduced significantly in all intervention groups, WC declined significantly in the metformin receivers
Alexy <i>et al.</i> , 2006, Germany ^[96]	Clinical trial	5-14 years old children	1 year	PA plus a course on nutrition and behavior therapy in comparison with a longitudinal study	Weight, BMI, BMI-SDS	A significant positive impact on weight, BMI, and BMI SDS and more consumption of carbohydrate and lower fat intake
Taveras <i>et al.</i> , 2011, USA ^[97]	Randomized controlled trial	2-6 years old children	1 year	Primary care restructuring for children and motivational interviewing for parents	BMI, obesity related behaviors	Little non-significant BMI change, more decline in screen viewing, a bit more decrease in fast food and sugar-sweetened beverage drinking, significant impacts on girls' BMI and low income families
Bloom <i>et al.</i> , 2013, Australia ^[98]	Pilot randomized controlled trial	6-12 years old children	6 weeks	CAAT or a wait-list group	Weight, BMI	Treatment had a significant, short term impact on the BMI and 6 months later, children's BMI did not go up significantly but the difference between basement and follow-up BMI was no more visible
Ben Ounis <i>et al.</i> , 2009, Tunisia ^[99]	Clinical trial	12.7-13.9 years old adolescents	2 months	3 groups: Hypocaloric diet program, individualized training program, and hypocaloric diet combined with training program	Weight, waist and hip measures, PBF, and BMI	Weight and FM decline were more significant in the diet combined with training program group
Dreimane <i>et al.</i> , 2007, USA ^[100]	Clinical trial	7-17 years old children	12 weeks	Interactive nutrition and exercise sessions with behavior modification	Weight, BMI velocity, BMI, and BMI z-score	BMI, BMI z-score, BMI velocity, and had a reduction along the treatment
Chen <i>et al.</i> , 2006, USA ^[101]	Clinical trial	10-17 years old adolescents	2 weeks	Lifestyle modification in children who were placed on a high-fiber, low-fat ad libitum diet plus daily aerobic exercise	Weight, BF percentage, BMI	Significant reduction of body weight and modest decline in BMI and BF percentage
Kelishadi <i>et al.</i> , 2010, Iran ^[102]	Triple-masked, randomized, placebo-controlled, crossover trial	60 obese children aged 6-10 years	8 weeks	20 mg of elemental zinc or placebo	BMI z-score	In zinc group the mean weight, BMI, BMI z-score reduced significantly whereas these variables went up in the other group
Lisón <i>et al.</i> , 2012, Spain ^[103]	Randomized controlled trial	6-16 years old children	6 months	Hospital clinic group-based (GRX) and home-based (HOX) exercise-Mediterranean diet intervention or a control group	Weight, B, WC	Significant decrement in BF percentage and BMI z-score in all intervention groups and significant decline in WC in HOX
Krebs <i>et al.</i> , 2010, USA ^[104]	Randomized clinical trial	12-18 years old adolescents	12 weeks	2 groups: HPLC or low fat diet	BMI z-score	Significant BMI-Z decline in both groups that was significantly more for the HPLC (Continued

Table 3: (Continued)										
Author, year, country	Design	Study participants	Duration of intervention	Type of intervention	Outcome	Results				
Kirk <i>et al.</i> , 2012, USA ^[105]	Randomized controlled trial	7-12 years old children	3 months	3 groups: LC, RGL, or standard PC diet plus weekly dietary counseling and biweekly group exercise	BMI z-score, WC, PBF	Lower BMI z-score in all diet groups which was sustained at 6 months with interchangeable results for BF percentage and WC				
Gately <i>et al.</i> , 2007, UK ^[91]	Randomized controlled trial	12.3-15.1 years old children	4 weeks	A standard or HP diet group		Diet had no additional impact, considering all children together there were significant weight loss, BMI-SD, FM, FFM, BF percentage, and WC				
Speroni <i>et al.</i> , 2008, USA ^[106]	Pilot hospital-based community program	8-12 years old children	12 weeks	Weekly exercise sessions and three nutrition presentations	BMI, BMI percentile, WC	Average BMI, BMI percentile, and WC decline				
Ford <i>et al.</i> , 2009, Sweden ^[107]	Randomized controlled trial	9-17 years old children	12 months	A computerized device to reduce speed of eating and total food intake plus standard lifestyle modification therapy	BMI-SDS, BF -SDS, change in portion size and eating speed	Significant less mean BMI SDS, meal size and BF -SDS which the former was sustained 6 months later				
Tan-Ting and Llido, 2011, the Philippines ^[108]	Hospital based multidisciplinary weight loss program	5-17 years old children	3 months	Modification of dietary intake and eating habits, PA increment, and explore eating motivation	Weight, BMI, BMI z-score, WC, BF	BMI z-score, BMI, weight, WC, and BF decline				
Kelishadi <i>et al.</i> , 2012, Iran ^[109]	Clinical trial	2-18 years old children	24 weeks	Exercise, diet education and behavioral modification	Weight, BMI, WC	All anthropometric measurements mean declined significantly				
Satoh <i>et al.</i> , 2007, Japan ^[110]	Clinical trial	9.5-12.5 years old children	6 months	MNBC once per month or no intervention	Nutritional balance, BMI	Overweight percentage significantly declined in treatment group and nutritional balance was seen for beans and sugar				
Savoye <i>et al.</i> , 2005, USA ^[111]	Clinical trial	11-16 years old adolescents	1 year	Nutrition education, exercise and behavioral modification	BMI z-score, BF percent, and self- concept	BMI z-score, BF percentage reduction while self-concept score enhanced				
Reinehr <i>et al.</i> , 2009, Germany ^[112]	Randomized controlled trial	10-16 years old adolescents	1 year	Lifestyle intervention (suitable diet, PA, behavior therapy)	BMI-SDS, WC	Significant SDS-BMI and WC decrease				
Adam <i>et al.</i> , 2009, Germany ^[113]	Clinical trial	8-15 years old children	1 year	Inpatient therapy (diet, nutritional education, exercise, behavior therapy) followed by a home-based outpatient treatment (including a structured exercise program)	Weight, BMI- SDS, eating behavior	BMI-SDS reduced significantly and a significant exploratory analyses positive results were seen for behavior changes and weight loss				
Nemet <i>et al.</i> , 2005, Israel ^[114]	Randomized prospective study	6-16 years old children	3 months	Combined dietary-behavioral- PA intervention	BMI z-score, BMI, weight, dietary and leisure time habits	Significant weight, BMI, and BF percentage decline which was sustained after 1 year				
Reinehr <i>et al.</i> , 2010, Germany ^[15]	Randomized controlled trial	8-16 years old children	6 months	PA, nutrition education and behavior counseling	BMI, WC, skinfold thickness, BMI-SDS, FM	BMI-SDS of 94% of children in treatment group reduced, similar results were observed for FM, skinfold thickness, and WC				
Weigel <i>et al.</i> , 2008, Germany	Controlled clinical trial	7-15 years old children	1 year	PA, nutrition education and coping strategies	BMI z-score, FM	BMI, BMI z-score, and FM declined				
Tsiros <i>et al.</i> , 2008, Australia ^[116]	Randomized controlled trial	12-18 years old adolescents	20 weeks	CBT (improving diet and activity habits and teaching strategies to maintain new health behaviors)	Body composition, hip and WC, weight, BMI	Significant decline in FM, BM, I weight, hip circumference, and abdominal fat in treatment group				

(Continued)

Table 3: (<i>Contin</i> Author, year,	Design	Study	Duration of	Type of intervention	Outcome	Results
country	Design		intervention	i ype of intervention	Julcollic	ricourio
Murer <i>et al.</i> , 2011, Switzerland ^[117]	Multidisciplinary weight-loss program	12-16 years old adolescents	2 months	Moderate calorie restriction, daily PA, and a behavior modification	Weight, BMI, BF	14.8% and 22.8% loss of body weight and FM respectively
Lofrano-Prado et al., 2009, Brazi ^[118]	Multidisciplinary lifestyle therapy	13-19 years old adolescents	24 weeks	Medical, dietary, exercise and psychological programs	Weight, BMI, body composition	Significant decline in BMI, FM, and BM without any changes after the end of study except for girls' FM
Fajcsak <i>et al.</i> , 2008, Hungary ^[119]	Pilot clinical trial	10-12 years old children	6 weeks	Replacement of at least 50% of the HGI foods with LGI foods plus weekly nutrition counseling	Anthropometric and body composition measures	Unchanged body weight and BMI score but significant decrease in % BF, non-significant reduction in FM, increase in muscle mass and FFM
Kelishadi <i>et al.</i> , 2009, Iran ^[120]	Clinical randomized trial	5-6 years old children	6 months	3 groups: Isocaloric DR, caloric restricted regimen, no recommendation education sessions about healthy lifestyle for all groups	BMI-SDS, WC, PBF	BMI-SDS and WC declined significantly in all participants, 3 years later, mean WC increased less in DR group and BF percentage had a significant decrement in all groups but kept on lower than the baseline measurements
Rosado <i>et al.</i> , 2008, Mexico ^[56]	Randomized controlled trial	6-12 years old children	12 weeks	4 treatments: One serving of RTEC at breakfast, 2 servings of RTEC at breakfast and dinner, one serving of RTEC plus a nutrition education guide, no treatment	Weight, body composition	Only RTEC + nutrition education group had no weight increment, they also revealed an unadjusted decline of total BF
Mohn <i>et al.</i> , 2005, İtaly ⁽¹²¹⁾	Prospective/ longitudinal study	7.6-10.7 years old children	6 months	Hypocaloric diet	BMI, WHR, FM	Along the treatment period, a significant reduction in FM, WHR, and BMI were seen which enhanced again during the follow-up period
St-Onge <i>et al.</i> , 2009, USA ^[122]	Randomized clinical trial	8-10 years old children	16 weeks	High or low milk consumption plus dietary counseling on healthy eating for both groups	Weight, BMI, body composition	Pediatrics' height and weight in all participants enhanced, because of that there was a trend toward BMI decline
Duckworth <i>et al.</i> , 2009, UK ^[90]	Randomized clinical trial	9-18 years old children	1 month	SP diet or HP diet in a camp	Body composition, BMI-SDS score	Significant changes of all measures over time except for lean BM and no significant impact of diet group on any body composition or anthropometric values
Kelishadi <i>et al.</i> , 2008, Iran ^[123]	Randomized clinical trial	12-18 years old children	6 weeks	Aerobic PA plus dietary advice	Weight, waist and hip circumferences, BMI and BMI-SDS	BF percentage, BMI, and WC declined
Ribeiro <i>et al.</i> , 2005, Brazil ^[124]	Randomized clinical trial	8-12 years old children	4 months	Hypocaloric diet or hypocaloric diet plus exercise training	Weight, BMI and z-score	Diet + exercise training showed a significant decline in weight, BMI z-score, and BMI
Woo <i>et al.</i> , 2004, China ^[125]	Randomized clinical trial	9-12 years old children	6 weeks	Dietary modification only or diet plus a supervised structured exercise program	Weight, BF content, WHR	WHR decreased in all children whereas there was no significant changes in BF, lean BM, and BMI

Author, year, country	Design	Study participants	Duration of intervention	Type of intervention	Outcome	Results
Togashi <i>et al.</i> , 2002, Japan ^[126]	Clinical trial	6-15 years old children	-	Children had to consume 75-80% of the energy requirement for their age at 5:2:3 ratios from carbohydrate, protein and fat along with mild-intensity exercises and improve their eating habits	Weight, RW	After 1.0±0.9 years of follow-up mean RW had a significant decrement
Nemet <i>et al.</i> , 2005, Israel ^[114]	Randomized controlled trial	6-16 years old children	3 months	Combined dietary and exercise program OR control	Weight, BMI percentile, triceps and subscapular skinfold, PBF	Significant decline in BF percentage, weight, and BMI in treatemnt group
Davis <i>et al.</i> , 2009, [127]	Pilot of a randomized controlled trial	14-18 years old girls	16 weeks	3 intervention groups: Control, nutrition only, and a N + ST, N + CAST	Weight, BMI, BMI z-score, body composition	Significant impact of intervention on BMI, BMI z-scores, weight, and tota BF along a 3% decline in the N + CAST group compared with a 3% increment in the N + ST group
Madsen <i>et al.</i> , 2009, USA ^[128]	Randomized clinical trial	8-19 years old children	12 weeks	Watch lifestyle intervention after a low glycemic load diet	BMI z-score	Children who had lower weight at baseline, had also more BMI z-score reductions
Kelishadi <i>et al.</i> , 2010, Iran ^[129]	Clinical trial	12-16 years adolescents POMA or POMN	2 months	Lifestyle modification (exercise, diet education and behavior modification)	WC, weight, bmi, triceps skinfold	BMI and WC declined in obese pediatrics whereas mean BF mass declined in all participants
Skelton <i>et al.</i> , 2008 ^[84]	Clinical trial	2-18 years old children	_	Cognitive behavioral modification, nutrition and PA education, training, and support	BMI, BMI z-score	No changes in median BMI, and a significantly enhancement in mean BMI whereas a significant decline of BMI z-score
Ventura <i>et al.</i> , 2009, USA ^[130]	Randomized control trial	Grades 9 through 12 children	16 weeks	3 groups: Control, nutrition-only group (decrease in added sugar consumption and an increase in fiber consumption) or N + ST group	Weight, BMI, BMI percentiles, whole BF, soft lean tissue	Consumption of more fiber had a significant relationship with BMI and visceral fat decline
Gately <i>et al.</i> , 2005, UK ^[131]	Summer residential weight-loss camp	9-18 years old children	6 weeks	A daily schedule of six 1-h, skill-based, fun, PA sessions, moderate dietary restriction, and group-based educational sessions	Weight, BMI, BMI SDS, WC, hip circumference	Children's BF, BM, BMI SDS, and waist and hip circumferences declined in camp
Waling <i>et al.</i> , 2010, Sweden ^[132]	Randomized, open trial	9-12 years old children	1 year	Group sessions about food and PA or no intervention	Energy intake, macronutrients and refined sugar intake	Energy intake declined significantly in both groups, in the treatment group, 11% reduction in energy intake relative to TEE and an increment in sucrose intake was seen, fat intake enhanced and carbohydrate intake reduced in control group

POMA = Phenotypically obese metabolically abnormal; POMN = Phenotypically obese metabolically normal; N + CAST = Nutrition and combination of aerobic and strength training; N + ST = Nutrition plus strength training; HP = High-protein; RTEC = Ready to eat cereal; LGI = Low glycemic index; HGI = High glycemic index; CBT = Cognitive behavioral therapy; MNBC = Model nutritional balance chart; PC = Portion controlled; RGL = Reduced glycemic load; LC = Low-CHO; HPLC = High protein, low carbohydrate diet; CAAT = Children's appetite awareness training; CBGT = Cognitive behavioral group treatment; BMI = Body mass index; SDS = Standard deviation score; TEE = Total energy expenditure; BF = Body fat; WC = Waist circumference; PBF=Percent of body fat; FM = Fat mass; FFM = Fat free mass; WHR = Waist-to-hip ratio; RW = Relative weight; DR=Dairy-rich diet; BM = Body mass; PA = Physical activity; SP = Standard protein; SMSMT = Short message service based maintenance treatment; ExO = Exercise only

Some studies had no effects on anthropometric index. However, they had resulted in dietary habits or physical fitness improvement.^[35,36,46,55,72,97,78,132] One explanation for

this can be self-reported dietary intake and PA data. On the other words, children may not pay attention to the instruction they were given. Teachers can train students how to choose nutritious and low-calorie foods. In addition, exercise training can be reinforced in the school curriculum.[14] Most students with excess weight prefer to eat fatty, sweetened, and salty snacks; they also choose fast foods as their first meal preference. If attendants get involved in obesity prevention programs, they can provide an environment for children to purchase healthy snacks and foods. Families can also make a circumstance which facilitates dietary and behavioral changes. Furthermore, if parents recognize the importance of weight control, they will be motivated to persuade their children for weight control. Families, especially mothers, are the best paradigm for children to learn a healthful eating pattern and activity habits. [136] Through family meals, children can eat more whole grains, fruits, vegetables, low fat milk, and consume less sweets and unhealthy fats. Parents should involve kids in preparing food to make a positive effect on their attitudes toward obesity prevention. It seems that the family has a key role in long-term weight control.[71] It has been shown that if family confidence is low, rate of dropout from weight loss programs will increase. [65] In this regard, providing parenting styles and skills as well as child management strategies are really critical.[81,137] Principally clinic-setting programs have brought nutrition, PA, and education or counseling together to achieve their goals and they have demonstrated long lasting results.[138] Most experts advise a low calorie low fat diet for obesity management; but they may have side-effects such as binge eating.[139] Actually weight loss is allowed in severe obesity and in other cases weight maintenance is an appropriate policy.[114] Some studies recommend HP or low carbohydrate diets because they cause more satiety.[140] A review article revealed that low carbohydrate ad libitum diets are as effective as calorie restricted diets.[140] In addition, a Cochrane review showed that low fat diets have no extra advantages in comparison with other diets with calorie restriction.^[141] Another review article revealed moderate effect of exercise on adiposity and not on BMI.[142] Clearly, PA is efficient when lasts for more than 60 min, is moderate to vigorous, and is done in all weekdays.[134] As low calorie diets are harmful for growth, and complying with them is difficult, some studies suggested that vigorous exercise can be a suitable substitute for diet therapy.[137,139] As always emphasized, to be effective, PA should be considered as an enjoyable fun, and should be integrated into daily lifestyle. Obesity causes mental problems in children and adolescents, [118] so behavior therapy seems to be vital. It sounds that group treatment is more successful than individual ones; [75,79] specifically when parents are engaged. Counselors should persuade children and adolescents to eat breakfast, to have structured meal plan to increase consumption of fruits, vegetables, and family meals, as well as to decrease the intake of sweetened beverages, calorie-dense foods, and eating out, as well as reducing the sedentary behaviors and the screen time. [14,91] Counselors also need to teach families about healthy shopping and cooking habits. Unfortunately, most studies did not show favorable effects, many of them had small sample sizes or had short-term follow-up or lacked of the control group. Managing extra group support sessions or using technologies such as E-mail or SMS for monitoring weight losers can be a good idea. [63,92,143]

CONCLUSION

The findings suggest that among different types of interventional programs for management of childhood obesity, a multidisciplinary approach in schools in which children's family are involved, can be the most feasible and effective approach. As teachers and parents are the best role models, it will be easier to accustom children with healthy dietary, PA, and behavioral habits. Future studies are needed to determine the long-term effects and sustainability of different programs.

AUTHORS' CONTRIBUTION

FAS contributed in the conception of the work, conducting the review, revising the draft, approval of the final version of the manuscript, and agreed for all aspects of the work. RK contributed in the conception and design of the work, drafting and revising the draft, approval of the final version of the manuscript, and agreed for all aspects of the work.

REFERENCES

- Cheng TO. Childhood obesity in modern China. Int J Cardiol 2012;157:315-7.
- Bereket A, Atay Z. Current status of childhood obesity and its associated morbidities in Turkey. J Clin Res Pediatr Endocrinol 2012;4:1-7.
- Bac A, Woźniacka R, Matusik S, Golec J, Golec E. Prevalence of overweight and obesity in children aged 6-13 years-alarming increase in obesity in Cracow, Poland. Eur J Pediatr 2012;171:245-51.
- El Mouzan MI, Al Herbish AS, Al Salloum AA, Al Omar AA, Qurachi MM. Regional variation in prevalence of overweight and obesity in Saudi children and adolescents. Saudi J Gastroenterol 2012;18:129-32.
- Zhang M, Guo F, Tu Y, Kiess W, Sun C, Li X, et al. Further increase of obesity prevalence in Chinese children and adolescents – Crosssectional data of two consecutive samples from the city of Shanghai from 2003 to 2008. Pediatr Diabetes 2012;13:572-7.
- Midha T, Nath B, Kumari R, Rao YK, Pandey U. Childhood obesity in India: A meta-analysis. Indian J Pediatr 2012;79:945-8.
- Mushtaq MU, Gull S, Abdullah HM, Shahid U, Shad MA, Akram J. Prevalence and socioeconomic correlates of overweight and obesity among Pakistani primary school children. BMC Public Health 2011;11:724.
- Jelastopulu E, Kallianezos P, Merekoulias G, Alexopoulos EC, Sapountzi-Krepia D. Prevalence and risk factors of excess weight in school children in West Greece. Nurs Health Sci 2012;14:372-80.
- John J, Wolfenstetter SB, Wenig CM. An economic perspective on childhood obesity: Recent findings on cost of illness and cost effectiveness of interventions. Nutrition 2012;28:829-39.

- Bruney TS. Childhood obesity: Effects of micronutrients, supplements, genetics, and oxidative stress. J Nurse Pract 2011;7:647-53.
- Procter KL. The aetiology of childhood obesity: A review. Nutr Res Rev 2007;20:29-45.
- Marcus MD, Levine MD, Kalarchian MA, Wisniewski L. Cognitive behavioral interventions in the management of severe pediatric obesity. Cogn Behav Pract 2003;10:147-56.
- 13. Kral JG, Kava RA, Catalano PM, Moore BJ. Severe Obesity: The Neglected Epidemic. Obes Facts 2012;5:254-69.
- Barlow SE, Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: Summary report. Pediatrics 2007;120 Suppl 4:S164-92.
- 15. Karnik S, Kanekar A. Childhood obesity: A global public health crisis. Int J Prev Med 2012;3:1-7.
- 16. Lytle LA. Dealing with the childhood obesity epidemic: A public health approach. Abdom Imaging 2012;37:719-24.
- Knowlden AP, Sharma M. Systematic review of family and homebased interventions targeting paediatric overweight and obesity. Obes Rev 2012;13:499-508.
- 18. Tounian P. Programming towards childhood obesity. Ann Nutr Metab 2011;58 Suppl 2:30-41.
- 19. Higgins V, Dale A. Ethnicity and childhood overweight/obesity in England. Pediatr Obes 2012;7:E22-6.
- 20. D'Auria JP. Weighing in: Prevention of childhood overweight and obesity. J Pediatr Health Care 2011;25:E26-30.
- Haynos AF, O'Donohue WT. Universal childhood and adolescent obesity prevention programs: Review and critical analysis. Clin Psychol Rev 2012;32:383-99.
- 22. Roy M, Millimet DL, Tchernis R. Federal nutrition programs and childhood obesity: Inside the black box. Rev Econ Househ 2012;10:1-38.
- Huus K, Ludvigsson JF, Enskär K, Ludvigsson J. Risk factors in childhood obesity-findings from the All Babies In Southeast Sweden (ABIS) cohort. Acta Paediatr 2007;96:1321-5.
- 24. Pelone F, Specchia ML, Veneziano MA, Capizzi S, Bucci S, Mancuso A, *et al.* Economic impact of childhood obesity on health systems: A systematic review. Obes Rev 2012;13:431-40.
- Summerbell CD, Waters E, Edmunds LD, Kelly S, Brown T, Campbell KJ. Interventions for preventing obesity in children. Cochrane Database Syst Rev 2005;20:CD001871.
- Mcmurray RG, Harrell JS, Bangdiwala SI, Bradley CB, Deng S, Levine A. A school-based intervention can reduce body fat and blood pressure in young adolescents. J Adolesc Health 2002;31:125-32.
- Contento IR, Koch PA, Lee H, Calabrese-Barton A. Adolescents demonstrate improvement in obesity risk behaviors after completion of choice, control & change, a curriculum addressing personal agency and autonomous motivation. J Am Diet Assoc 2010;110:1830-9.
- Bacardí-Gascon M, Pérez-Morales ME, Jiménez-Cruz A. A six month randomized school intervention and an 18-month follow-up intervention to prevent childhood obesity in Mexican elementary schools. Nutr Hosp 2012;27:755-62.
- Lubans DR, Morgan PJ, Callister R, Collins CE, Plotnikoff RC. Exploring the mechanisms of physical activity and dietary behavior change in the program x intervention for adolescents. J Adolesc Health 2010;47:83-91.
- Plachta-Danielzik S, Landsberg B, Lange D, Seiberl J, Müller MJ. Eight-year follow-up of school-based intervention on childhood overweight – The Kiel Obesity Prevention Study. Obes Facts 2011;4:35-43.
- 31. Muckelbauer R, Libuda L, Clausen K, Reinehr T, Kersting M. A simple dietary intervention in the school setting decreased incidence of overweight in children. Obes Facts 2009;2:282-5.

- 32. Plachta-Danielzik S, Pust S, Asbeck I, Czerwinski-Mast M, Langnäse K, Fischer C, *et al.* Four-year follow-up of school-based intervention on overweight children: The KOPS study. Obesity (Silver Spring) 2007;15:3159-69.
- 33. Kipping RR, Jago R, Lawlor DA. Diet outcomes of a pilot school-based randomised controlled obesity prevention study with 9-10 year olds in England. Prev Med 2010;51:56-62.
- 34. Shah P, Misra A, Gupta N, Hazra DK, Gupta R, Seth P, et al. Improvement in nutrition-related knowledge and behaviour of urban Asian Indian school children: Findings from the 'Medical education for children/Adolescents for Realistic prevention of obesity and diabetes and for healthy aGeing' (MARG) intervention study. Br J Nutr 2010;104:427-36.
- Bayer O, von Kries R, Strauss A, Mitschek C, Toschke AM, Hose A, et al. Short- and mid-term effects of a setting based prevention program to reduce obesity risk factors in children: A clusterrandomized trial. Clin Nutr 2009;28:122-8.
- Neumark-Sztainer D, Story M, Hannan PJ, Rex J. New Moves: A school-based obesity prevention program for adolescent girls. Prev Med 2003;37:41-51.
- 37. Going S, Thompson J, Cano S, Stewart D, Stone E, Harnack L, *et al.* The effects of the Pathways Obesity Prevention Program on physical activity in American Indian children. Prev Med 2003;37:S62-9.
- Donnelly JE, Greene JL, Gibson CA, Smith BK, Washburn RA, Sullivan DK, et al. Physical activity across the curriculum (PAAC): A randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Prev Med 2009;49:336-41.
- Mauriello LM, Ciavatta MM, Paiva AL, Sherman KJ, Castle PH, Johnson JL, et al. Results of a multi-media multiple behavior obesity prevention program for adolescents. Prev Med 2010;51:451-6.
- Bürgi F, Niederer I, Schindler C, Bodenmann P, Marques-Vidal P, Kriemler S, et al. Effect of a lifestyle intervention on adiposity and fitness in socially disadvantaged subgroups of preschoolers: A cluster-randomized trial (Ballabeina). Prev Med 2012;54:335-40.
- 41. Sevinç Ö, Bozkurt A, Gündoğdu M, Aslan Übaş, Ağbuğa B, Aslan Ş, *et al.* Evaluation of the effectiveness of an intervention program on preventing childhood obesity in Denizli, Turkey. Turk J Med Sci 2011;41:1097-105.
- 42. Greening L, Harrell KT, Low AK, Fielder CE. Efficacy of a school-based childhood obesity intervention program in a rural southern community: TEAM Mississippi Project. Obesity (Silver Spring) 2011;19:1213-9.
- Muckelbauer R, Libuda L, Clausen K, Kersting M. Long-term process evaluation of a school-based programme for overweight prevention. Child Care Health Dev 2009;35:851-7.
- 44. Fung C, Kuhle S, Lu C, Purcell M, Schwartz M, Storey K, et al. From "best practice" to "next practice": The effectiveness of school-based health promotion in improving healthy eating and physical activity and preventing childhood obesity. Int J Behav Nutr Phys Act 2012;9:27.
- 45. Sigmund E, El Ansari W, Sigmundová D. Does school-based physical activity decrease overweight and obesity in children aged 6-9 years? A two-year non-randomized longitudinal intervention study in the Czech Republic. BMC Public Health 2012;12:570.
- 46. Thivel D, Isacco L, Lazaar N, Aucouturier J, Ratel S, Doré E, et al. Effect of a 6-month school-based physical activity program on body composition and physical fitness in lean and obese schoolchildren. Eur J Pediatr 2011;170:1435-43.
- 47. Foster GD, Sherman S, Borradaile KE, Grundy KM, Vander Veur SS, Nachmani J, *et al.* A policy-based school intervention to prevent overweight and obesity. Pediatrics 2008;121:e794-802.

- 48. Johnston CA, Tyler C, Fullerton G, McFarlin BK, Poston WS, Haddock CK, *et al.* Effects of a school-based weight maintenance program for Mexican-American children: Results at 2 years. Obesity (Silver Spring) 2010;18:542-7.
- Jiang J, Xia X, Greiner T, Wu G, Lian G, Rosenqvist U. The effects of a 3-year obesity intervention in schoolchildren in Beijing. Child Care Health Dev 2007;33:641-6.
- 50. Duncan MJ, Al-Nakeeb Y, Nevill AM. Effects of a 6-week circuit training intervention on body esteem and body mass index in British primary school children. Body Image 2009;6:216-20.
- Vissers D, De Meulenaere A, Vanroy C, Vanherle K, Van de Sompel A, Truijen S, et al. Effect of a multidisciplinary school-based lifestyle intervention on body weight and metabolic variables in overweight and obese youth. e-SPEN. Eur e-J Clin Nutr Metab 2008;3:e196-202.
- 52. Klein D, De Toia D, Weber S, Wessely N, Koch B, Dordel S, *et al*. Effects of a low threshold health promotion intervention on the BMI in pre-school children under consideration of parental participation. e-SPEN. Eur e-J Clini Nutr Metab 2010;5:e125-31.
- Kang HS, Ryu MH, Park S. The effects of a weight loss program focusing on maternal education on childhood obesity. Asian Nurs Res 2008;2:150-8.
- James J, Thomas P, Kerr D. Preventing childhood obesity: Two year follow-up results from the Christchurch obesity prevention programme in schools (CHOPPS). BMJ 2007;335:762.
- Caballero B, Clay T, Davis SM, Ethelbah B, Rock BH, Lohman T, et al. Pathways: A school-based, randomized controlled trial for the prevention of obesity in American Indian schoolchildren. Am J Clin Nutr 2003;78:1030-8.
- Rosado JL, del R Arellano M, Montemayor K, García OP, Caamaño Mdel C. An increase of cereal intake as an approach to weight reduction in children is effective only when accompanied by nutrition education: A randomized controlled trial. Nutr J 2008;7:28.
- 57. Spiegel SA, Foulk D. Reducing overweight through a multidisciplinary school-based intervention. Obesity (Silver Spring) 2006;14:88-96.
- Gleason PM, Dodd AH. School breakfast program but not school lunch program participation is associated with lower body mass index. J Am Diet Assoc 2009;109:S118-28.
- 59. Gruber KJ, Haldeman LA. Using the family to combat childhood and adult obesity. Prev Chronic Dis 2009;6:A106.
- Ball GD, Ambler KA, Keaschuk RA, Rosychuk RJ, Holt NL, Spence JC, et al. Parents as agents of change (PAC) in pediatric weight management: The protocol for the PAC randomized clinical trial. BMC Pediatr 2012;12:114.
- Warschburger P, Kröller K. "Childhood overweight and obesity: Maternal perceptions of the time for engaging in child weight management". BMC Public Health 2012;12:295.
- Wen LM, Simpson JM, Baur LA, Rissel C, Flood VM. Family functioning and obesity risk behaviors: Implications for early obesity intervention. Obesity (Silver Spring) 2011;19:1252-8.
- Kalavainen M, Utriainen P, Vanninen E, Korppi M, Nuutinen O. Impact of childhood obesity treatment on body composition and metabolic profile. World J Pediatr 2012;8:31-7.
- 64. Savoye M, Nowicka P, Shaw M, Yu S, Dziura J, Chavent G, *et al*. Long-term results of an obesity program in an ethnically diverse pediatric population. Pediatrics 2011;127:402-10.
- Gunnarsdottir T, Njardvik U, Olafsdottir AS, Craighead LW, Bjarnason R. The role of parental motivation in family-based treatment for childhood obesity. Obesity (Silver Spring) 2011;19:1654-62.
- Danielsen YS, Nordhus IH, Júlíusson PB, Mæhle M, Pallesen S.
 Effect of a family-based cognitive behavioural intervention on body mass index, self-esteem and symptoms of depression in

- children with obesity (aged 7-13): A randomised waiting list controlled trial. Obes Res Clin Pract 2013;7:e116-28.
- 67. West F, Sanders MR, Cleghorn GJ, Davies PS. Randomised clinical trial of a family-based lifestyle intervention for childhood obesity involving parents as the exclusive agents of change. Behav Res Ther 2010;48:1170-9.
- Vos RC, Huisman SD, Houdijk EC, Pijl H, Wit JM. The effect of family-based multidisciplinary cognitive behavioral treatment on health-related quality of life in childhood obesity. Qual Life Res 2012;21:1587-94.
- 69. Sacher PM, Kolotourou M, Chadwick PM, Cole TJ, Lawson MS, Lucas A, *et al.* Randomized controlled trial of the MEND program: A family-based community intervention for childhood obesity. Obesity (Silver Spring) 2010;18 Suppl 1:S62-8.
- Teder M, Mörelius E, Bolme P, Nordwall M, Ekberg J, Timpka T. Family-based behavioural intervention programme for obese children: A feasibility study. BMJ Open 2012;2:e000268.
- Edwards C, Nicholls D, Croker H, Van Zyl S, Viner R, Wardle J. Family-based behavioural treatment of obesity: Acceptability and effectiveness in the UK. Eur J Clin Nutr 2006;60:587-92.
- Bean MK, Wilson DB, Thornton LM, Kelly N, Mazzeo SE. Dietary intake in a randomized-controlled pilot of NOURISH: A parent intervention for overweight children. Prev Med 2012;55:224-7.
- Gunnarsdottir T, Njardvik U, Olafsdottir AS, Craighead L, Bjarnason R. Childhood obesity and co-morbid problems: Effects of Epstein's family-based behavioural treatment in an Icelandic sample. J Eval Clin Pract 2012;18:465-72.
- Melin A, Lenner RA. Prevention of further weight gain in overweight school children, a pilot study. Scand J Caring Sci 2009;23:498-505.
- Kalavainen MP, Korppi MO, Nuutinen OM. Clinical efficacy of group-based treatment for childhood obesity compared with routinely given individual counseling. Int J Obes (Lond) 2007;31:1500-8.
- Hughes AR, Stewart L, Chapple J, McColl JH, Donaldson MD, Kelnar CJ, et al. Randomized, controlled trial of a best-practice individualized behavioral program for treatment of childhood overweight: Scottish Childhood Overweight Treatment Trial (SCOTT). Pediatrics 2008;121:e539-46.
- Avery A, Pallister C, Allan J, Stubbs J, Lavin J. An initial evaluation of a family-based approach to weight management in adolescents attending a community weight management group. J Hum Nutr Diet 2012;25:469-76.
- Looney SM, Raynor HA. Are changes in consumption of "healthy" foods related to changes in consumption of "unhealthy" foods during pediatric obesity treatment? Int J Environ Res Public Health 2012;9:1368-78.
- Garipağaoğlu M, Sahip Y, Darendeliler F, Akdikmen O, Kopuz S, Sut N. Family-based group treatment versus individual treatment in the management of childhood obesity: Randomized, prospective clinical trial. Eur J Pediatr 2009;168:1091-9.
- 80. Pinard CA, Hart MH, Hodgkins Y, Serrano EL, McFerren MM, Estabrooks PA. Smart choices for healthy families: A pilot study for the treatment of childhood obesity in low-income families. Health Educ Behav 2012;39:433-45.
- 81. Golley RK, Magarey AM, Baur LA, Steinbeck KS, Daniels LA. Twelve-month effectiveness of a parent-led, family-focused weight-management program for prepubertal children: A randomized, controlled trial. Pediatrics 2007;119:517-25.
- Jiang JX, Xia XL, Greiner T, Lian GL, Rosenqvist U. A two year family based behaviour treatment for obese children. Arch Dis Child 2005;90:1235-8.
- Stark LJ, Spear S, Boles R, Kuhl E, Ratcliff M, Scharf C, et al. A pilot randomized controlled trial of a clinic and home-based behavioral

- intervention to decrease obesity in preschoolers. Obesity (Silver Spring) 2011;19:134-41.
- 84. Skelton JA, DeMattia LG, Flores G. A pediatric weight management program for high-risk populations: A preliminary analysis. Obesity (Silver Spring) 2008;16:1698-701.
- 85. Papadaki A, Linardakis M, Larsen TM, van Baak MA, Lindroos AK, Pfeiffer AF, *et al.* The effect of protein and glycemic index on children's body composition: The DiOGenes randomized study. Pediatrics 2010;126:e1143-52.
- Berkowitz RI, Wadden TA, Gehrman CA, Bishop-Gilyard CT, Moore RH, Womble LG, et al. Meal replacements in the treatment of adolescent obesity: A randomized controlled trial. Obesity (Silver Spring) 2011;19:1193-9.
- 87. Epstein LH, Paluch RA, Beecher MD, Roemmich JN. Increasing healthy eating vs. reducing high energy-dense foods to treat pediatric obesity. Obesity (Silver Spring) 2008;16:318-26.
- Duggins M, Cherven P, Carrithers J, Messamore J, Harvey A. Impact of family YMCA membership on childhood obesity: A randomized controlled effectiveness trial. J Am Board Fam Med 2010;23:323-33.
- 89. Davis AM, James RL, Boles RE, Goetz JR, Belmont J, Malone B. The use of TeleMedicine in the treatment of paediatric obesity: Feasibility and acceptability. Matern Child Nutr 2011;7:71-9.
- Duckworth LC, Gately PJ, Radley D, Cooke CB, King RF, Hill AJ. RCT of a high-protein diet on hunger motivation and weight-loss in obese children: An extension and replication. Obesity (Silver Spring) 2009;17:1808-10.
- Gately PJ, King NA, Greatwood HC, Humphrey LC, Radley D, Cooke CB, et al. Does a high-protein diet improve weight loss in overweight and obese children? Obesity (Silver Spring) 2007;15:1527-34.
- Bauer S, de Niet J, Timman R, Kordy H. Enhancement of care through self-monitoring and tailored feedback via text messaging and their use in the treatment of childhood overweight. Patient Educ Couns 2010;79:315-9.
- 93. Knöpfli BH, Radtke T, Lehmann M, Schätzle B, Eisenblätter J, Gachnang A, et al. Effects of a multidisciplinary inpatient intervention on body composition, aerobic fitness, and quality of life in severely obese girls and boys. J Adolesc Health 2008;42:119-27.
- 94. Yackobovitch-Gavan M, Nagelberg N, Phillip M, Ashkenazi-Hoffnung L, Hershkovitz E, Shalitin S. The influence of diet and/or exercise and parental compliance on health-related quality of life in obese children. Nutr Res 2009;29:397-404.
- Rezvanian H, Hashemipour M, Kelishadi R, Tavakoli N, Poursafa P. A randomized, triple masked, placebo-controlled clinical trial for controlling childhood obesity. World J Pediatr 2010;6:317-22.
- Alexy U, Reinehr T, Sichert-Hellert W, Wollenhaupt A, Kersting M, Andler W. Positive changes of dietary habits after an outpatient training program for overweight children. Nutr Res 2006;26:202-8.
- Taveras EM, Gortmaker SL, Hohman KH, Horan CM, Kleinman KP, Mitchell K, et al. Randomized controlled trial to improve primary care to prevent and manage childhood obesity: The High Five for Kids study. Arch Pediatr Adolesc Med 2011;165:714-22.
- 98. Bloom T, Sharpe L, Mullan B, Zucker N. A pilot evaluation of appetite-awareness training in the treatment of childhood overweight and obesity: A preliminary investigation. Int J Eat Disord 2013;46:47-51.
- Ben Ounis O, Elloumi M, Lac G, Makni E, Van Praagh E, Zouhal H, et al. Two-month effects of individualized exercise training with or without caloric restriction on plasma adipocytokine levels in obese female adolescents. Ann Endocrinol (Paris) 2009;70:235-41.
- 100. Dreimane D, Safani D, MacKenzie M, Halvorson M, Braun S, Conrad B, *et al*. Feasibility of a hospital-based, family-centered intervention to reduce weight gain in overweight children and adolescents. Diabetes Res Clin Pract 2007;75:159-68.

- 101. Chen AK, Roberts CK, Barnard RJ. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism 2006;55:871-8.
- 102. Kelishadi R, Hashemipour M, Adeli K, Tavakoli N, Movahedian-Attar A, Shapouri J, *et al*. Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab Syndr Relat Disord 2010;8:505-10.
- 103. Lisón JF, Real-Montes JM, Torró I, Arguisuelas MD, Alvarez-Pitti J, Martínez-Gramage J, *et al*. Exercise intervention in childhood obesity: A randomized controlled trial comparing hospital-versus home-based groups. Acad Pediatr 2012;12:319-25.
- 104. Krebs NF, Gao D, Gralla J, Collins JS, Johnson SL. Efficacy and safety of a high protein, low carbohydrate diet for weight loss in severely obese adolescents. J Pediatr 2010;157:252-8.
- 105. Kirk S, Brehm B, Saelens BE, Woo JG, Kissel E, D'Alessio D, et al. Role of carbohydrate modification in weight management among obese children: A randomized clinical trial. J Pediatr 2012;161:320-71.
- 106. Speroni KG, Tea C, Earley C, Niehoff V, Atherton M. Evaluation of a pilot hospital-based community program implementing fitness and nutrition education for overweight children. J Spec Pediatr Nurs 2008;13:144-53.
- 107. Ford AL, Bergh C, Södersten P, Sabin MA, Hollinghurst S, Hunt LP, *et al*. Treatment of childhood obesity by retraining eating behaviour: Randomised controlled trial. BMJ 2009;340:B5388.
- 108. Tan-Ting AM, Llido L. Outcome of a hospital based multidisciplinary weight loss program in obese Filipino children. Nutrition 2011;27:50-4.
- 109. Kelishadi R, Malekahmadi M, Hashemipour M, Soghrati M, Soghrati M, Mirmoghtadaee P, *et al.* Can a trial of motivational lifestyle counseling be effective for controlling childhood obesity and the associated cardiometabolic risk factors? Pediatr Neonatol 2012;53:90-7.
- 110. Satoh A, Menzawa K, Lee S, Hatakeyama A, Sasaki H. Dietary guidance for obese children and their families using a model nutritional balance chart. Jpn J Nurs Sci 2007;4:95-102.
- 111. Savoye M, Berry D, Dziura J, Shaw M, Serrecchia JB, Barbetta G, et al. Anthropometric and psychosocial changes in obese adolescents enrolled in a Weight Management Program. J Am Diet Assoc 2005;105:364-70.
- 112. Reinehr T, Widhalm K, l'Allemand D, Wiegand S, Wabitsch M, Holl RW, et al. Two-year follow-up in 21,784 overweight children and adolescents with lifestyle intervention. Obesity (Silver Spring) 2009;17:1196-9.
- 113. Adam S, Westenhofer J, Rudolphi B, Kraaibeek HK. Effects of a combined inpatient-outpatient treatment of obese children and adolescents. Obes Facts 2009;2:286-93.
- 114. Nemet D, Barkan S, Epstein Y, Friedland O, Kowen G, Eliakim A. Short- and long-term beneficial effects of a combined dietary-behavioral-physical activity intervention for the treatment of childhood obesity. Pediatrics 2005;115:e443-9.
- 115. Reinehr T, Schaefer A, Winkel K, Finne E, Toschke AM, Kolip P. An effective lifestyle intervention in overweight children: Findings from a randomized controlled trial on "Obeldicks light". Clin Nutr 2010;29:331-6.
- 116. Tsiros MD, Sinn N, Brennan L, Coates AM, Walkley JW, Petkov J, et al. Cognitive behavioral therapy improves diet and body composition in overweight and obese adolescents. Am J Clin Nutr 2008;87:1134-40.
- 117. Murer SB, Knöpfli BH, Aeberli I, Jung A, Wildhaber J, Wildhaber Brooks J, et al. Baseline leptin and leptin reduction predict improvements in metabolic variables and long-term fat loss in

- obese children and adolescents: A prospective study of an inpatient weight-loss program. Am J Clin Nutr 2011;93:695-702.
- 118. Lofrano-Prado MC, Antunes HK, do Prado WL, de Piano A, Caranti DA, Tock L, *et al.* Quality of life in Brazilian obese adolescents: Effects of a long-term multidisciplinary lifestyle therapy. Health Qual Life Outcomes 2009;7:61.
- 119. Fajcsak Z, Gabor A, Kovacs V, Martos E. The effects of 6-week low glycemic load diet based on low glycemic index foods in overweight/obese children — Pilot study. J Am Coll Nutr 2008;27:12-21.
- 120. Kelishadi R, Zemel MB, Hashemipour M, Hosseini M, Mohammadifard N, Poursafa P. Can a dairy-rich diet be effective in long-term weight control of young children? J Am Coll Nutr 2009;28:601-10.
- 121. Mohn A, Catino M, Capanna R, Giannini C, Marcovecchio M, Chiarelli F. Increased oxidative stress in prepubertal severely obese children: Effect of a dietary restriction-weight loss program. J Clin Endocrinol Metab 2005;90:2653-8.
- 122. St-Onge MP, Goree LL, Gower B. High-milk supplementation with healthy diet counseling does not affect weight loss but ameliorates insulin action compared with low-milk supplementation in overweight children. J Nutr 2009;139:933-8.
- 123. Kelishadi R, Hashemi M, Mohammadifard N, Asgary S, Khavarian N. Association of changes in oxidative and proinflammatory states with changes in vascular function after a lifestyle modification trial among obese children. Clin Chem 2008;54:147-53.
- 124. Ribeiro MM, Silva AG, Santos NS, Guazzelle I, Matos LN, Trombetta IC, *et al.* Diet and exercise training restore blood pressure and vasodilatory responses during physiological maneuvers in obese children. Circulation 2005;111:1915-23.
- 125. Woo KS, Chook P, Yu CW, Sung RY, Qiao M, Leung SS, *et al.* Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation 2004;109:1981-6.
- 126. Togashi K, Masuda H, Rankinen T, Tanaka S, Bouchard C, Kamiya H. A 12-year follow-up study of treated obese children in Japan. Int J Obes Relat Metab Disord 2002;26:770-7.
- 127. Davis JN, Tung A, Chak SS, Ventura EE, Byrd-Williams CE, Alexander KE, *et al*. Aerobic and strength training reduces adiposity in overweight Latina adolescents. Med Sci Sports Exerc 2009;41:1494-503.
- 128. Madsen KA, Garber AK, Mietus-Snyder ML, Orrell-Valente JK, Tran CT, Wlasiuk L, et al. A clinic-based lifestyle intervention for pediatric obesity: Efficacy and behavioral and biochemical predictors of response. J Pediatr Endocrinol Metab 2009;22:805-14.
- 129. Kelishadi R, Hashemipour M, Sarrafzadegan N, Mohammadifard N, Alikhasy H, Beizaei M, et al. Effects of a lifestyle modification trial among phenotypically obese metabolically normal and phenotypically obese metabolically abnormal adolescents in comparison with phenotypically normal metabolically obese adolescents. Matern Child Nutr 2010;6:275-86.
- 130. Ventura E, Davis J, Byrd-Williams C, Alexander K, McClain A, Lane CJ, et al. Reduction in risk factors for type 2 diabetes mellitus in response to a low-sugar, high-fiber dietary intervention in

- overweight Latino adolescents. Arch Pediatr Adolesc Med 2009;163:320-7.
- 131. Gately PJ, Cooke CB, Barth JH, Bewick BM, Radley D, Hill AJ. Children's residential weight-loss programs can work: A prospective cohort study of short-term outcomes for overweight and obese children. Pediatrics 2005;116:73-7.
- 132. Waling M, Lind T, Hernell O, Larsson C. A one-year intervention has modest effects on energy and macronutrient intakes of overweight and obese Swedish children. J Nutr 2010;140:1793-8.
- 133. Hashemipour M, Kelishadi R, Shapouri J, Sarrafzadegan N, Amini M, Tavakoli N, *et al.* Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens) 2009;8:279-85.
- 134. Davis MM, Gance-Cleveland B, Hassink S, Johnson R, Paradis G, Resnicow K. Recommendations for prevention of childhood obesity. Pediatrics 2007;120 Suppl 4:S229-53.
- 135. Weigel C, Kokocinski K, Lederer P, Dötsch J, Rascher W, Knerr I. Childhood obesity: Concept, feasibility, and interim results of a local group-based, long-term treatment program. J Nutr Educ Behav 2008;40:369-73.
- 136. Klohe-Lehman DM, Freeland-Graves J, Clarke KK, Cai G, Voruganti VS, Milani TJ, *et al*. Low-income, overweight and obese mothers as agents of change to improve food choices, fat habits, and physical activity in their 1-to-3-year-old children. J Am Coll Nutr 2007;26:196-208.
- 137. Kitzman-Ulrich H, Wilson DK, St George SM, Lawman H, Segal M, Fairchild A. The integration of a family systems approach for understanding youth obesity, physical activity, and dietary programs. Clin Child Fam Psychol Rev 2010;13:231-53.
- 138. Latzer Y, Edmunds L, Fenig S, Golan M, Gur E, Hochberg Z, et al. Managing childhood overweight: Behavior, family, pharmacology, and bariatric surgery interventions. Obesity (Silver Spring) 2009;17:411-23.
- 139. Polivy J. Psychological consequences of food restriction. J Am Diet Assoc 1996;96:589-92.
- 140. Gibson LJ, Peto J, Warren JM, dos Santos Silva I. Lack of evidence on diets for obesity for children: A systematic review. Int J Epidemiol 2006;35:1544-52.
- 141. Summerbell CD, Cameron C, Glasziou PP. WITHDRAWN: Advice on low-fat diets for obesity. Cochrane Database Syst Rev 2008;CD003640.
- 142. McGovern L, Johnson JN, Paulo R, Hettinger A, Singhal V, Kamath C, et al. Clinical review: Treatment of pediatric obesity: A systematic review and meta-analysis of randomized trials. J Clin Endocrinol Metab 2008;93:4600-5.
- 143. de Niet J, Timman R, Bauer S, van den Akker E, Buijks H, de Klerk C, *et al*. The effect of a short message service maintenance treatment on body mass index and psychological well-being in overweight and obese children: A randomized controlled trial. Pediatr Obes 2012;7:205-19.

Source of Support: Nil, Conflict of Interest: None declared.