Pretreatment Plasminogen Activator Inhibitor-1 (PAI-1) Level in the Failure of Streptokinase Therapy in Acute Myocardial Infarction

H. Shemirani MD*, M. Tajmirriahi MD**, A. Rezaei PhD***, F. Oreisi ****

Abstract

Background: The risk for unsuccessful reperfusion after streptokinase therapy may be caused by the antifibrinolytic effect of platelet-derived type 1 plasminogen activator inhibitor (PAI-1) and antistreptokinase antibodies. This study aims to show the relation of pretreatment PAI-1 levels of patients with acute myocardial infarction treated with streptokinase and the outcome of fibrinolysis, emphasizing on reperfusion with and without considering pretreatment antistreptokinase antibodies.

Methods: Pretreatment PAI-1 and antistreptokinase antibodies levels of 61 patients with acute myocardial infarction, treated with streptokinase, were determined by an enzyme-linked immunosorbent assay kit method. Failure of thrombolysis with streptokinase was present when reperfusion was unsuccessful as assessed by noninvasive reperfusion criteria.

Results: Mean pretreatment PAI-1 level of patients was 29.72 ± 4.74 ng/ml. Thrombolysis with streptokinase failed significantly with higher pretreatment PAI-1 levels (p < 0.05) in all patients and patients with negative pretreatment antistreptokinase antibodies.

Conclusion: We showed that higher on reperfusion in patients with acute myocardial infarction, with and without considering pretreatment antistreptokinase pretreatment PAI-1 levels were associated with significant failure of streptokinase therapy with the emphasis antibodies (anti-SK). It seems that by estimating PAI-1>25ng/l and antistreptokinase antibodies higher than normal levels in patients before the start of streptokinase therapy, candidates for potentially unsuccessful streptokinase therapy (with failed reperfusion) can be identified in advance and an alternative therapy such as primary angioplasty with better immediate results can be started.

Keywords: Plasminogen Activator Inhibitor, Streptokinase, Myocardial Infarction.
One factor that could potentially influence the response to thrombolytic treatment and the occurrence of spontaneous thrombolysis is PAI-1. Ninety percent of PAI-1 is present in platelets. PAI-1 inhibits fibrinolysis by its rapid action as an antiplasmin. A few clinical studies in developed countries have demonstrated that elevated levels of baseline PAI-1 before the start of fibrinolytic treatment are associated with unsuccessful recanalization, because of unsuccessful reperfusion. However, there is no data about the role of PAI-1 level on the outcome of patients with acute myocardial infarction treated by streptokinase, heparin, and ASA in Iran and Middle East. On the other hand, it has been suggested that pretreatment streptokinase (SK) antibodies reduce the thrombolytic effect, although the results are not consistent. One study in Iran showed that not only pretreatment SK antibodies may reduce the thrombolytic effect but also the prevalence of this antibody in Iranian patients was higher than developed countries. We designed this study to investigate the relation of pretreatment PAI-1 levels and the clinical outcome of thrombolysis with streptokinase of Iranian patients with acute myocardial infarction, with and without considering pretreatment antistreptokinase antibodies (anti-SK) with the emphasis on reperfusion.

Materials and Methods

Sixty-five patients with acute myocardial infarction that were treated with streptokinase, admitted to the CCU over 12 months, included. Inclusion criteria were precordial chest pain lasting >30 minutes but <12 hours and not responding to two to three sublingual nitroglycerin tablets, associated with 1 to 2 mm of ST-segment elevations in at least two ECG leads. Exclusion criteria were contraindication of streptokinase in acute myocardial infarction. Four patients whose blood samples for estimation of PAI-1 values were not obtained before the start of streptokinase therapy were excluded. Before the start of therapy, PAI-1 activity of plasma, red blood cell count, platelets, and ceratine kinase (CK) were estimated in the blood samples, from 8:00 AM to 12:00 AM to avoid diurnal variations from the intravenous line in an antecubital vein. CK was repeated every 8 hours during the first 24 hours of treatment and an ECG was recorded at the 90 minute after treatment and every 8 hour. On admission, continuous monitoring of rhythm was initiated. Treatment consisted of 325 mg of oral ASA plus an intravenous bolus of 5000 IU of heparin after 6 hours from streptokinase therapy, followed by systemic intravenous high-dose infusion of 1000 IU of heparin per hour during the next 24 hours. ASA at 250 mg per day was given orally during the hospital stay.

PAI-1 activity of human plasma was determined by an enzyme-linked immunosorbent assay kit (IMUBIND Tissue PAI-1 ELISA Kit) and antistreptokinase were determined with indirect homemade ELISA by cutoff assay. During the first 4 to 6 days, the patients were continuously monitored for arrhythmias and conduction disturbances. Noninvasive systemic arterial blood pressure was measured hourly and patients were clinically examined twice daily. When necessary, other medications such as nitrates, beta blocker, antiarrhythmic drugs, analgesics, angiotensin-converting enzyme inhibitors, digitalis, dopamine, and dobutamine were prescribed at the discretion of the attending physician.

Several studies have shown that ST segment resolution on the EKG is the strong predictor of outcome in acute MI patients and its absence is a better predictor of an occluded rather than patent infarct related artery. Therefore, in this study we considered successful reperfusion as a ST resolution >50% at 90 min.

The data were analyzed by nonparametric statistical testing. The values were expressed as mean ± SD, or percentages when it was necessary. Differences between the two groups were tested by chi-square test and Student t test. A P value < 0.05 was considered as statistically significant.

Results

Mean pretreatment PAI-1 level of patients was 29.72 ± 4.74 ng/ml (17.20 to 41.20 ng/ml). Patients were stratified into two groups, according to the final outcome of thrombolysis with streptokinase. Streptokinase therapy was started 5.7 ± 1.23 hr after onset of pain. Baseline clinical characteristics and in-hospital clinical events, with the emphasis on reperfusion and final unsuccessful thrombolysis with streptokinase, were compared between the two groups of patients (Table 1). Nonsignificant differences were found between the two groups of patients (Table 1). On the other hand, it has been suggested that pretreatment ST segment resolution on the EKG is the strong predictor of outcome in acute MI patients and its absence is a better predictor of an occluded rather than patent infarct related artery.
PAI-1 and antistreptokinase antibodies in Iranian patients

<table>
<thead>
<tr>
<th>Baseline characteristic</th>
<th>Successful reperfusion</th>
<th>Failed reperfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>56.6 ± 5.1</td>
<td>55.8 ± 6.1</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>25/3</td>
<td>20/2</td>
</tr>
<tr>
<td>Hypertension</td>
<td>30%</td>
<td>43%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>20%</td>
<td>28%</td>
</tr>
<tr>
<td>Smoking</td>
<td>40%</td>
<td>36%</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>30%</td>
<td>25%</td>
</tr>
<tr>
<td>Time from onset of chest pain to therapy (hr)</td>
<td>5.5± 1.24</td>
<td>6.5 ±1.43</td>
</tr>
</tbody>
</table>

No significant differences are between groups.

Table 2. Stratification of streptokinase-treated patients according to pretreatment PAI-1 levels. Data are frequency and percentage.

<table>
<thead>
<tr>
<th>PAI-1 (ng/l)</th>
<th>Patients</th>
<th>Reperfusion</th>
<th>Failed reperfusion</th>
<th>Treatment failure</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>30%</td>
</tr>
<tr>
<td>>25</td>
<td>51</td>
<td>17</td>
<td>34</td>
<td>66% *</td>
</tr>
<tr>
<td><30</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>56.6%</td>
</tr>
<tr>
<td>>30</td>
<td>31</td>
<td>9</td>
<td>22</td>
<td>70.9%</td>
</tr>
<tr>
<td><35</td>
<td>53</td>
<td>21</td>
<td>32</td>
<td>60.3%</td>
</tr>
<tr>
<td>>35</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>62.5%</td>
</tr>
</tbody>
</table>

* P = 0.012

level. The groups were compared, according to the outcome of thrombolysis with streptokinase, depending on failed reperfusion. Significant failure of thrombolysis was demonstrated when pretreatment PAI-1 levels of patients with acute myocardial infarction were > 25 ng/l.

Discussion

The delay in reperfusion or resistance to streptokinase therapy and later reclosures reduce the rate of success of treatment33 - 36. PAI-1, with its antifibrinolytic activity, is thought to participate in treatment failure3, 10,14,16,36. It inhibits spontaneous and pharmacologically induced fibrinolysis and predisposes to subsequent thrombosis with recollection of initially recanalized vessel in patients treated with fibrinolytic agents4, 12, 37. Streptokinase activates the fibrinolytic system indirectly by forming a complex with plasminogen, which converts the remaining circulating and thrombus-bound plasminogen into effective plasmin, which is not directly affected by PAI-19, 37. Antifibrinolytic action of PAI-1 upon streptokinase therapy is achieved by local, thrombus-stabilizing effect, thus yielding it resistant to lysis9. PAI-1 inhibits fibrinolysis by its rapid action as an antiplasmin11, 13. In vitro experiments suggest that plasminogen activator inhibitor-1 (PAI-1) is an important determinant of the antifibrinolytic effect of platelets. Circulating PAI-1 activity can represent the marker for the local effects of PAI-19, 12, 13.

We demonstrated that higher pretreatment PAI-1 levels was associated with failed reperfusion in Iranian patients (developing country), this is similar to other studies performed in developed countries9, 14-18. In Sinkovic et al18 study that was performed in a developed country, failure of thrombolysis with streptokinase had been significantly associated with pretreatment PAI-1 levels of >4.0 U/ml. In this study failure of thrombolysis with streptokinase is significantly associated with pretreatment PAI-1 levels >25 ng/l. So, because of significant difference in reperfusion failure when pretreatment PAI-1 levels were > 25 ng/l, by estimating PAI-1 levels of patients before the start of streptokinase therapy, candidates for potentially unsuccessful streptokinase therapy (with failed reperfusion) can be identified in advance and an alternative therapy such as primary angioplasty with better immediate results can be started. Of course, to obtain reliable and more accurate pretreatment PAI-1 level leading to failure

www.mui.ac.ir
of streptokinase therapy, other studies with larger sample size in the future should be designed. The possible role of anti SK antibodies on failed reperfusion showed in many studies19-22. Therefore anti SK antibodies can probably interact as confounding or obtrusive factor with the effect of high pretreatment PAI-1 levels on reperfusion.

The majorities of previous clinical trials on PAI-1 activity demonstrated the inhibitory effect of PAI-1 on reperfusion in acute myocardial infarction, but, were less clear on the influence of PAI-1 on patients with negative anti SK antibodies titer3, 9, 16, 37.

A significant number of our negative anti SK antibodies titer patients with higher pretreatment PAI-1 levels, developed unsuccessful reperfusion. As a result, it seems that the effect of high pretreatment PAI-1 levels on reperfusion is independent of anti SK antibodies effect.

In conclusion we showed that higher pretreatment PAI-1 levels were associated with significant failure of streptokinase therapy in patients with acute myocardial infarction, with and without considering pretreatment antistreptokinase antibodies (anti-SK) with the emphasis on reperfusion. The critical PAI-1 level for failure of streptokinase therapy, probably is > 25ng/l. Therefore by estimating PAI-1> 25ng/l and antistreptokinase antibodies higher than normal levels before the start of streptokinase therapy, candidates for potentially unsuccessful streptokinase therapy (with failed reperfusion) could be identified in advance and an alternative therapy such as primary angioplasty with better immediate results can be started.

References

7. ISIS-2 Collaborative Group: Randomized trial of intravenous streptokinase, oral aspirin or both, or neither among 17187 cases of suspected acute myocardial infarction. ISIS-1. Lancet 1988; 2: 349-60.