Original Article

Outcome of Endoscopic Sinus Surgery in Inflammatory Sinonasal Patients: A Descriptive Study

S. Hashemi MD*, M. Rostami MD*, S. Abtahi MD*

ABSTRACT

Background: Various systems of Computerized Tomographic (CT) staging and scoring have been applied to define the extent of sinus abnormality and the degree of mucosal thickening. Functional Endoscopic Sinus Surgery (FESS) has been used with considerable success rate to treat chronic sinonasal patients unresponsive to medical therapy. This study was designed to investigate the relationship between the result of CT scoring and staging and the outcome of surgery.

Methods: The one year outcome of FESS together with preoperative CT staging and scoring were determined and compared with each other.

Results: Compared to those with higher stages (III and IV), patients with lower preoperative CT stages (I and II) had a significantly higher successful outcome of surgery. CT staging and scoring were obviously correlated.

Conclusions: The results of this study show that preoperative CT staging and scoring are two useful means for better prediction of the long-term outcome of surgery one year after FESS.

Keywords: Endoscopic Sinus Surgery, Chronic sinusitis, Computerized Tomography

Computerized Tomographic (CT) scan of sinonasal structures is the mainstay of diagnosis in chronic sinusitis1. Various systems of CT staging and scoring have been proposed to define the extent of sinus abnormality and the degree of mucosal thickening. Although Functional Endoscopic Sinus Surgery (FESS) has been used as a relatively less invasive procedure than its older counterparts in the surgical management of chronic sinusonal patients, the results of this procedure have not always been desirable1, 2. This technique is mainly used in case of chronic recurrent sinusitis unresponsive to a 3–6 week course of appropriate medical therapy3.

Estimating the outcome of FESS may help recognizing the patients who require more invasive procedures than FESS for the treatment of their chronic sinonasal inflammatory process. Determining the correlation between CT staging and scoring on one hand and the results of FESS on the other hand may help estimating the outcome of surgery. In fact CT scan of sinuses provides a virtual view of the surgical field in patients undergoing FESS. These benefits are hardly met by traditional X-ray views (e.g. Water's, Caldwell, submentovertex, and Rheese views) especially for evaluation of posterior ethmoid cells4. Preoperative coronal CT scan of paranasal sinuses facilitates studying important infrastructures of sinonasal area including the infundibulum, carotid artery, optic nerve, ostiomeatal complex, and the base of skull5,6.

To what extent could we rely on CT findings to nominate a patient for surgical therapy, has been the subject of many
studies. CT staging and scoring methods have been adopted for this purpose, but there are still some shortcomings. Some authors believe that most patients remain clinically asymptomatic before sinus mucosal thickening reaches 3 mm.

This study was designed to assess the relationship between the results of CT scoring and staging and patients' symptoms to decide which patient will get most benefit by FESS.

Materials and Methods

The study involved 162 patients who underwent FESS for their chronic sinonasal inflammatory process unresponsive to a 3–6 week course of medical therapy in a University hospital between 2000 and 2002. The long–term success rate of FESS was analyzed with respect to preoperative CT stage and score. Data were extracted from the patients' hospital records and completed during follow-up visits. CT staging was performed according to the Metson and Glilchik8 (Table 1). In addition, CTs were scored using the method proposed by Thawley and Piccirillo9 as:

\[
\text{Total CT Score} = 2 \times X_{\text{LEFT}} + Y_{\text{LEFT}} + Z_{\text{LEFT}} + 2 \times X_{\text{RIGHT}} + Y_{\text{RIGHT}} + Z_{\text{RIGHT}}
\]

in which:

- \(X\) = number of sinuses with opacification.
- \(Y\) = number of sinuses without opacification but with mucosal thickening.
- \(Z = 2\) (if there is mucosal thickening in ostiomeatal complex).

LEFT and RIGHT subscripts stand for left and right sides respectively.

Patients were visited postoperatively every two months for three times and then at 6 months and one year postoperatively. During follow-up visits they were asked whether any symptoms remained. Eventually after the last visit, the outcome of FESS was evaluated as complete improvement (class 1), partial improvement (class 2), no change (class 3), and deterioration (class 4). Classes 1 and 2 were labeled as successful while classes 3 and 4 were regarded as unsuccessful.

Data were presented as \(n (%)\). Percentages were rounded to the nearest integer. Round off error was \(\leq 1\%\). Data were compared between low (I and II) and high (III and IV) stages of preoperative CT using Fisher exact test. Correlations between CT stages and scores and between CT stages and outcome were assessed by Spearman correlation. A \(P\) value < 0.05 was considered as statistically significant. Data were analyzed using SPSS 10.0.

Results

The frequencies and percentages of different anatomic variations in preoperative CT of paranasal sinuses evaluated as follows:

Significant septal deviation 32 (19.7%) cases, chonco bullosa 8 (5%) cases, Haller cell 6 (3.7%) cases, agger nassi cell 19 (11.7%) cases, onnodi cell 3 (1.8%) cases, paradoxical middle turbinate 2 (1.2%) cases, maxillary sinus hypoplasia 5 (3%) cases, antier clenoid process pneumatization 11 (6.8%), variation of anscinate process 3 (1.8%). In 12 (7.4%) cases more than two variations were seen. Thirty one (19%) patients had significant septal deviation on CT but only 12 (7.4%) needed septoplasty.

Proportion of patients with successful surgical outcome (classes 1 and 2) was significantly higher in patients with lower preoperative CT stages (I and II) compared to those with higher stages (III and IV) (83 (98%) vs. 66 (86%) in higher stages, \(P = 0.007\); Table 2).

Frequency distribution of preoperative CT scores is depicted in Figure 1. CT staging and scoring were interrelated as follows:

In patients with stage I, 16 (38%) had scores 0 – 4, 23 (54.8%) scored 5 – 9, 2 (4.8%) scored 10 – 14 and one patient had a score of 16. In patients with stage II, 9 (21%) had scores 5 – 9, 16 (36%) scored 10 – 14, 17 (39.5%) scored 15 – 19, and one patient had a score of 22. In patients with stage III, 6 (12.5%) had scores 10 – 14, 20 (41.7%) scored 15 – 19, and 22 (45.8%) scored 20 – 24. All patients with stage IV had CT scores \(\geq 20\). CT stages were significantly correlated with surgical outcome \((r = 0.4; P < 0.05)\). There was a very strong and significant correlation.
between CT stages and scores \((r = 0.88; P = 0.000) \).

Discussion

In this study proportions of different preoperative CT stages were assessed and correlated with their corresponding outcome after one year of FESS. There is a strong correlation between CT stage and surgical outcome, which is evident from the high proportion of patients in lower CT stages that have successful surgical outcome. In addition there is a high correlation between CT stages and scores which means higher stages of preoperative CTs were associated with higher CT scores.

Metson & Gliklich introduced a new system of CT staging for diagnostic and prognostic purposes in chronic rhinosinusitis patients\(^\text{10}\). In a review of their patients they found that in limited pathologies, surgical success rate was high. In the study by Sobol et al\(^\text{11}\) on 393 patients it was shown that extension of disease, massive polyposis and pan rhino sinusitis which were the most important adverse prognostic factors were prevalent among patients with high preoperative CT stages.

Coronal CT of sinuses can identify many anatomic variations and obstruction, which have significant impacts upon surgical approach and outcome\(^\text{12, 13}\).

The benefits of FESS were also documented in previous reports\(^\text{14, 15}\). The results of this study show that only one third of patients who have significant septal deviation on preoperative CT need surgical correction during FESS.

Incidence of agger nasi cell was reported in previous studies to be 3 – 80%\(^\text{14 – 16}\). In this study the incidence was relatively low (11.7%). Pneumatization of anterior clinoid process, which may be associated with vulnerability of optic nerve, was seen in 6.8% of cases in the present study, which is comparable to previous reports\(^\text{16}\).

One year outcome analysis shows that, sinonasal symptoms in patients with higher preoperative CT stages diminish more slowly than in those with lower stages. In other words, in advanced cases, complete disappearance of symptoms is relatively lower compared to those in lower stages.

In conclusion, CT staging and scoring are two useful means for prognostic purposes in chronic sinonasal patients. They have a very strong correlation with each other. In addition CT staging has remarkable correlation with one year surgical outcome following FESS.

Table 1. Computerized Tomographic Staging used in this study\(^\text{9}\).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal findings, mucosal thickening below 2 mm</td>
</tr>
<tr>
<td>I</td>
<td>Any unilateral abnormality or disease</td>
</tr>
<tr>
<td>II</td>
<td>Bilateral disease, limited to ethmoid or maxillary sinus</td>
</tr>
<tr>
<td>III</td>
<td>Bilateral disease, at least in frontal or sphenoid sinus</td>
</tr>
<tr>
<td>IV</td>
<td>Pan Rhino sinusitis</td>
</tr>
</tbody>
</table>

Figure 1. Distribution frequency of different CT scores in this study. Numbers on bars are count.
Table 2. Frequencies of different classes of functional endoscopic sinus surgery outcome against different stages of preoperative CT findings after one year postoperatively.

<table>
<thead>
<tr>
<th>CT Stage</th>
<th>Total</th>
<th>Class</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>42 (26)</td>
<td>37 (88)</td>
<td>4 (9.6)</td>
<td>1 (2.4)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>43 (27)</td>
<td>33 (76.6)</td>
<td>9 (21)</td>
<td>0 (0)</td>
<td>1 (2.4)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>48 (30)</td>
<td>23 (48)</td>
<td>20 (42)</td>
<td>1 (2)</td>
<td>4 (8)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>29 (18)</td>
<td>12 (41.4)</td>
<td>11 (38)</td>
<td>3 (10.3)</td>
<td>3 (10.3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>162 (100)</td>
<td>105 (65)</td>
<td>44 (27)</td>
<td>5 (3)</td>
<td>8 (5)</td>
<td></td>
</tr>
</tbody>
</table>

Refer to the text and Table 1 for the definition of different classes and stages

References